聚苯胺及其复合材料的制备及功能性和可加工性研究

聚苯胺及其复合材料的制备及功能性和可加工性研究

论文摘要

本学位论文的研究工作以聚苯胺为核心展开,首先制备了木质素磺酸掺杂的聚苯胺(LGS-PANI),并对其结构进行了深入的探讨,在此基础上,以具有柔性高分子链的水溶性聚合物聚(2-丙烯酰胺基-2-甲基丙磺酸)(PAMPS)为掺杂剂,制备了水溶性的PANI/PAMPS混合膜。然后,分别以具有微米级粒径的粉煤灰(FAs)和纳米级粒径的凹凸棒(ATP)作为无机客体,使用硅烷偶联剂(APTES)对其进行有机修饰,形成自组装单片层(SAM)包覆的无机客体,并使苯胺单体(An)在有机修饰的无机客体表面接枝聚合,制备了SAM-FAs/PANI复合材料和SAM-ATP/PANI纳米复合材料,最后综合考虑两种聚苯胺复合材料的导电性、粒径大小及均一性、分散性、电导率稳定性以及热稳定性,选择以SAM-ATP/PANI纳米复合材料作为导电填料,以聚苯乙烯(PS)为基体聚合物,制备了PANI/SAM-ATP/PS复合材料,促进了聚苯胺由功能材料向结构材料的过渡。具体包括以下几个方面的内容:(1)对LGS-PANI在不同LGS含量下的室温电导率及电导率的温度依赖性进行了研究,根据实验结果分析推测,认为LGS-PANI可能具有如下结构:当LGS含量为11.4 wt%时,形成以LGS为模板的伸展链结构;当LGS含量为48.2 wt%时,形成双链有序堆积的结构;当LGS含量为69.5wt%时, LGS单链无序堆积的比例增大。在LGS含量较高时,又包含了LGS与PANI分子间氢键的作用。通过X射线衍射分析、热重分析和扫描电子显微镜等手段对所做的论述进行了证明。(2) PANI/PAMPS的水溶液具有较好的稳定性,在正常环境条件下,可以稳定地放置两个月以上。当Anmol/AMPSmol=0.3:1时,PANI/PAMPS具有双链盘绕结构的PAMPS掺杂PANI (PANI-PAMPS),并且堆积成颗粒状,扫描电子显微镜(SEM)分析显示,其堆积所成的颗粒形貌较好地分散于线性聚合物PAMPS基体当中;通过紫外-可见光谱和荧光发射光谱对PANI/PAMPS水溶液的荧光增强效应进行了理论分析;分别对PANI/PAMPS固体膜和PANI/PAMPS水溶液的室温电导率进行了研究,并用热重分析仪研究了PANI/PAMPS的热稳定性。(3)制备了具有完善核壳结构及较好分散性的SAM-FAs/PANI复合材料,对不同SAM-FAs含量时SAM-FAs/PANI复合材料的室温电导率、电导率的温度依赖性以及平均比电容进行了测定分析。使用振动样品磁强计(VSM)对SAM-FAs/PANI复合材料的磁性能进行了表征,研究了SAM-FAs的添加量对SAM-FAs/PANI复合材料的饱和磁化强度和矫顽力的影响,并用热重分析仪研究了SAM-FAs/PANI复合材料的热稳定性。(4)制备了结构均一、分散性良好的SAM-ATP/PANI纳米纤维,对不同SAM-ATP含量时SAM-ATP/PANI纳米复合材料的室温电导率及电导率的温度依赖性进行了测定分析,通过变程跳跃模型和Arrhenius方程的线性拟合曲线,计算出20.1wt% ATP/PANI和18.7 wt% SAM-ATP/PANI纳米复合材料的T0、σ0和Ea值,对18.7 wt% SAM-ATP/PANI纳米复合材料呈现出较好的室温电导率给出了理论解释,使用热重分析仪对SAM-ATP/PANI纳米复合材料的热稳定性进行了研究。(5)对不同导电填料含量下,PANI/SAM-ATP/PS复合材料的微观形貌进行了表征,并对PANI/SAM-ATP/PS复合材料的室温电阻率进行了测定,在80℃循环升温冷却的条件下,考察了PANI/SAM-ATP/PS复合材料电阻率的稳定性;使用万能材料试验机对PANI/SAM-ATP/PS复合材料的抗拉强度进行了测定分析,并用热重分析仪对复合材料的热稳定性进行了研究。

论文目录

  • 摘要
  • Abstract
  • 第一章 文献综述
  • 1.1 引言
  • 1.2 导电高分子概述
  • 1.3 聚苯胺(PANI)
  • 1.3.1 聚苯胺的研究起源
  • 1.3.2 聚苯胺的结构
  • 1.3.3 聚苯胺的掺杂
  • 1.3.4 聚苯胺的导电机理
  • 1.3.5 聚苯胺的合成方法
  • 1.3.6 聚苯胺的性质
  • 1.3.7 聚苯胺的开发及应用
  • 1.4 聚苯胺复合材料
  • 1.4.1 聚苯胺复合材料概述
  • 1.4.2 聚苯胺/无机物复合材料
  • 1.4.3 聚苯胺/有机聚合物复合材料
  • 1.4.4 聚苯胺复合材料的应用前景
  • 1.5 本学位论文选题指导思想
  • 参考文献
  • 第二章 木质素磺酸掺杂聚苯胺(LGS-PANI)的制备、性能及结构研究
  • 2.1 引言
  • 2.2 实验部分
  • 2.2.1 原料
  • 2.2.2 仪器设备
  • 2.2.3 LGS-PANI的制备
  • 2.2.4 LGS-PANI中LGS含量的测定
  • 2.2.5 性能测定和结构表征
  • 2.3 结果与讨论
  • 2.3.1 室温电导率和结构分析
  • 2.3.2 电导率的温度依赖性
  • 2.3.3 FTIR表征
  • 2.3.4 XRD分析
  • 2.3.5 热稳定性分析
  • 2.3.6 形貌表征
  • 2.4 结论
  • 参考文献
  • 第三章 水溶性聚苯胺膜(PANI/PAMPS)的制备及性能研究
  • 3.1 引言
  • 3.2 实验部分
  • 3.2.1 原料
  • 3.2.2 仪器设备
  • 3.2.3 PANI/PAMPS膜的制备
  • 3.2.4 性能测定和结构表征
  • 3.3 结果与讨论
  • 3.3.1 形貌表征
  • 3.3.2 UV-Vis光谱分析
  • 3.3.3 XRD分析
  • 3.3.4 荧光光谱
  • 3.3.5 FTIR表征
  • 3.3.6 热稳定性分析
  • 3.3.7 室温电导率分析
  • 3.4 结论
  • 参考文献
  • 第四章 粉煤灰/聚苯胺(SAM-FAS/PANI)核壳微球的制备及性能研究
  • 4.1 引言
  • 4.2 实验部分
  • 4.2.1 原料
  • 4.2.2 仪器设备
  • 4.2.3 SAM-FAs/PANI复合材料的制备
  • 4.2.4 FAs/PANI复合材料的制备
  • 4.2.5 性能测定和结构表征
  • 4.3 结果与讨论
  • 4.3.1 元素分析
  • 4.3.2 形貌表征
  • 4.3.3 室温电导率分析
  • 4.3.4 电导率的温度依赖性
  • 4.3.5 磁性能
  • 4.3.6 XRD分析
  • 4.3.7 FTIR表征
  • 4.3.8 UV-Vis光谱分析
  • 4.3.9 热稳定性分析
  • 4.3.10 恒电流充放电分析
  • 4.4 结论
  • 参考文献
  • 第五章 凹凸棒/聚苯胺(SAM-ATP/PANI)纳米纤维的制备及性能研究
  • 5.1 引言
  • 5.2 实验部分
  • 5.2.1 原料
  • 5.2.2 仪器设备
  • 5.2.3 SAM-ATP/PANI纳米纤维的制备
  • 5.2.4 ATP/PANI复合材料的制备
  • 5.2.5 性能测定和结构表征
  • 5.3 结果与讨论
  • 5.3.1 元素分析
  • 5.3.2 形貌表征
  • 5.3.3 室温电导率分析
  • 5.3.4 电导率的温度依赖性
  • 5.3.5 FTIR表征
  • 5.3.6 XRD分析
  • 5.3.7 UV-Vis光谱分析
  • 5.3.8 热稳定性分析
  • 5.4 结论
  • 参考文献
  • 第六章 聚苯胺/凹凸棒/聚苯乙烯(PANI/SAM-ATP/PS)复合材料的制备及性能研究
  • 6.1 引言
  • 6.2 实验部分
  • 6.2.1 原料
  • 6.2.2 仪器设备
  • 6.2.3 SAM-ATP的制备
  • 6.2.4 PANI和PANT/SAM-ATP的制备
  • 6.2.5 PANI/SAM-ATP/PS复合材料的制备
  • 6.2.6 性能测定和结构表征
  • 6.3 结果与讨论
  • 6.3.1 导电填料的电性能分析
  • 6.3.2 PANI/SAM-ATP/PS复合材料的形貌表征
  • 6.3.3 室温电阻率分析
  • 6.3.4 电阻率的稳定性分析
  • 6.3.5 力学性能分析
  • 6.3.6 FTIR表征
  • 6.3.7 XRD分析
  • 6.3.8 热稳定性分析
  • 6.4 结论
  • 参考文献
  • 全文总结
  • 攻读博士学位期间已发表的论文
  • 致谢
  • 相关论文文献

    • [1].ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes[J]. Journal of Energy Chemistry 2019(08)
    • [2].Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field[J]. Chinese Journal of Chemical Engineering 2018(05)
    • [3].Thermal Characteristics of PVA-PANI-ZnS Nanocomposite Film Synthesized by Gamma Irradiation Method[J]. Chinese Physics Letters 2018(11)
    • [4].Synthesis and Enhanced Electrochemical Activity of Ag-Pt Bimetallic Nanoparticles Decorated MWCNTs/PANI Nanocomposites[J]. Journal of Wuhan University of Technology(Materials Science) 2018(05)
    • [5].Immobilization of PANI on Mesoporous Carbon:Preparation and Supercapacitor Performance[J]. Transactions of Nanjing University of Aeronautics and Astronautics 2018(04)
    • [6].A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application[J]. Nano-Micro Letters 2018(04)
    • [7].NiCo_2O_4 decorated PANI–CNTs composites as supercapacitive electrode materials[J]. Journal of Energy Chemistry 2017(01)
    • [8].Electrical Conductivity and pH Sensitivity of Ordered Porous Gel Acrylate Polymer Membrane with Nano-PANI Doping[J]. Journal of Harbin Institute of Technology 2017(02)
    • [9].接枝聚合法制备PANI/CeO_2-APTMS复合材料及其电化学性能[J]. 高分子材料科学与工程 2017(07)
    • [10].花状CuS/PANI复合材料的制备及其电磁屏蔽性能研究[J]. 现代化工 2017(11)
    • [11].MnFe_2O_4@PANI@Ag Heterogeneous Nanocatalyst for Degradation of Industrial Aqueous Organic Pollutants[J]. Journal of Materials Science & Technology 2016(02)
    • [12].PANI导电水凝胶的制备及其进展[J]. 高分子通报 2020(06)
    • [13].原位聚合法制备PANI/RGO导电复合材料的性能[J]. 工程塑料应用 2018(03)
    • [14].硅烷偶联剂预处理PANI对水性涂料性能的影响[J]. 精细化工 2017(11)
    • [15].Synthesis and supercapacitor characteristics of PANI/CNTs composites[J]. Chinese Science Bulletin 2010(11)
    • [16].Preparation of Surfactants Directed PANI/In_2O_3 Nanocomposite Thin Films and Its NH_3-Sensing Properties[J]. Journal of Electronic Science and Technology 2010(02)
    • [17].Preparation,Characterization and Comparative NH_3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films[J]. Journal of Materials Science & Technology 2010(07)
    • [18].Chlorine gas sensors using hybrid organic semiconductors of PANI/ZnPcCl_(16)[J]. 半导体学报 2010(08)
    • [19].Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite[J]. Journal of Wuhan University of Technology(Materials Science) 2019(01)
    • [20].Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 材料导报 2018(01)
    • [21].PANI/MoS_2复合材料的制备及其电化学性能研究[J]. 当代化工 2018(05)
    • [22].双脉冲电镀制备PbO_2-PANI复合电极的研究[J]. 化工新型材料 2018(07)
    • [23].Two-dimensional polyaniline nanosheets via liquid-phase exfoliation[J]. Chinese Physics B 2017(04)
    • [24].Preparation and Antibacterial Activity of Three-component NiFe_2O_4@PANI@Ag Nanocomposite[J]. Journal of Materials Science & Technology 2014(07)
    • [25].PMOV_2/PANI/TiO_2复合材料的制备及光催化性能[J]. 化工新型材料 2012(12)
    • [26].Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods[J]. Progress in Natural Science:Materials International 2012(04)
    • [27].PANI/Fe-杭锦2~#土催化剂对乙酸的光催化降解研究[J]. 内蒙古师范大学学报(自然科学汉文版) 2019(05)
    • [28].电场-抽滤法制备VACNTs/PANI复合膜及其热性能研究[J]. 广州化工 2018(15)
    • [29].Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices[J]. Progress in Natural Science:Materials International 2016(06)
    • [30].Ternary Fe_3O_4@PANI@Au nanocomposites as a magnetic catalyst for degradation of organic dyes[J]. Science China(Technological Sciences) 2017(05)

    标签:;  ;  ;  ;  ;  

    聚苯胺及其复合材料的制备及功能性和可加工性研究
    下载Doc文档

    猜你喜欢