论文摘要
工业革命后的近二百多年里,随着技术水平的提高和工业化、城市化进程的加快,人类社会发生了翻天覆地的变化,生活水平得到了空前的提高。但是全球变暖、海平面上升、极端天气等威胁人类生存的问题也接踵而至。在不断的探索中人类最终认识到温室气体的大量排放是造成一系列威胁人类生存问题产生的根源。于是低碳发展思想应运而生。当今世界各国政要、科研人员甚至是普通百姓都已深切体会到低碳发展的重要性。但是在学术界,对于低碳发展的研究还并未形成系统。现有研究缺乏对区域CO2净排放基础上的低碳发展路径的探索,提出的发展路径并不能很好的适应区域发展的实际,并且关于CO2净排放的研究还分属于自然科学和社会科学两大领域,其间交流甚少。这在一定程度上限制了低碳发展研究的进一步深入。另外,现有研究大多针对国家尺度,对省级区域的研究还相对较少。本文依托山东师范大学研究生创新基金,选择山东省作为本文的研究区域。山东省位于我国东部沿海地区,交通发达、区位优越、经济发展水平较高、省内也存在类似全国的东、中、西的空间差异。因此对山东省的研究具有一定的典型性和示范性。本文在参考《2006年IPCC国家温室气体清单指南》和国内外现有研究成果的基础上,利用《山东省统计年鉴》和“中国科学院国际科学数据服务平台”提供的数据,构建了山东省CO2净排放的测算体系,选择了相应的计算方法,并最终计算出了2000-2009年山东省及各地市的CO2净排放量。然后根据计算结果分析了山东省CO2排放量、吸收量及净排放量的总量变动、空间格局、空间差异演变等方面的特点。再采用LMDI因素分解法分析了各种因素对山东省CO2排放量变动的影响以及山东省CO2净排放存在空间差异的原因。最后在分析山东省低碳发展面临的机遇与挑战的基础上,结合计量分析结果提出山东省的低碳发展路径。本文结论主要如下:(1)山东省CO2净排放呈逐年增加态势,但2006年之后,增长幅度有所减缓,已接近倒U型曲线的顶点。其中,CO2排放量在2006年之后趋于平稳,而CO2吸收量较不稳定,大致围绕吸收量为16000万t的直线上下波动。(2)山东省各部门CO2排放均有不同程度的增加。第二产业和火力发电是山东省CO2排放的主要来源,其次是供热和第三产业,最后是生活消费和第一产业。其中,第二产业的排放主要来源于工业生产过程中的能源和原料消费。第三产业排放主要源于交通运输、仓储及邮电通信业。生活消费与第一产业的CO2排放所占比重相对较小。从增长趋势来看,2006年之后,第二产业排放有呈现出较为平缓的趋势,第三产业排放迅速增加。从排放强度看,第二产业(特别是第二产业中的工业)排放强度远大于第一产业与第三产业。(3)山东省CO2净排放空间差异较大,高净排放区主要位于济南、淄博、青岛3市。其中山东省CO2排放量空间差异较大但正逐年减小,排放区域集中现象仍然较为严重,排放重心有从东北向西南转移的趋势;而CO2吸收量空间差异较大的现象则未有改变,也未呈现集中分布的现象。(4)从变化趋势来看,山东省CO2净排放呈现出双中心增长,排放类型空间集聚的特点。山东省CO2净排放高速增长区域主要分布在淄博、潍坊、青岛、日照、济宁5市。其中排放量变化受社会经济影响较大,高速增长区主要分布在烟台、青岛、日照、潍坊、济南、淄博等6市,其空间分布主要沿胶济沿线和山东省海岸线呈T字形。而吸收量高速增长区主要位于烟台、德州、聊城、菏泽等市,下降区和中速增长区呈现较为明显的集中块状分布特征。(5)山东省能源结构以煤为主,煤炭占能源消耗的70%以上。山东省的产业结构为“二、三、一”,其中第二产业中高耗能行业所占比重较高。第二产业万元产值能耗高于浙江、天津、江苏、江西、广东、北京、上海及福建等东部省市。第三产业发展相对较为粗放,其万元产值能耗仅低于西部地区,要高于全国平均水平,远高于东部地区,甚至高于中部地区。(6)过去10年间,山东省CO2排放的变动主要受人均能耗、经济部门能源强度及经济强度的影响。产业结构、能源结构、人口规模的变动对山东省CO2排放的影响相对较小。山东省CO2排放的减少主要来源于经济部门能源强度的减小。各地市CO2排放的差异主要受自然条件、经济规模、产业结构以及城市化水平的影响。(7)山东省低碳发展的机遇与挑战并存。低碳发展的路径主要有发挥政府主导作用,促进制度的低碳化转型;依托低碳科研机构,发展低碳技术;鼓励发展新能源,转变以煤为主的能源结构等。从短期来看,山东省的低碳发展应重点关注制度的低碳化转型、土地利用结构的调整以及高耗能行业的转移;从长期来看,山东省应将重点放在低碳技术研发与扩散、能源消费结构的转变、产业结构的调整和能源效率的提高等方面。
论文目录
相关论文文献
- [1].电厂中CO_2捕集技术的成本及效率[J]. 清华大学学报(自然科学版)网络.预览 2009(09)
- [2].应用CO_2超临界萃取苋菜红色素的工艺研究[J]. 粮食与食品工业 2019(06)
- [3].纳米流体强化CO_2水合物生成的研究进展[J]. 现代化工 2019(12)
- [4].稠油油藏蒸汽驱后期CO_2辅助蒸汽驱技术[J]. 石油勘探与开发 2019(06)
- [5].曲安奈德局部封闭结合CO_2点阵激光治疗增生性瘢痕[J]. 中外医学研究 2019(34)
- [6].CO_2响应性高分子乳化剂的制备与性能评价[J]. 油田化学 2019(04)
- [7].铝酸盐水泥在高温和CO_2气氛的水化机理研究[J]. 水泥工程 2019(06)
- [8].CO_2驱集输管道内腐蚀机理研究[J]. 化学工程与装备 2020(01)
- [9].CO_2-环烷烃/芳香烃界面张力的测定与估算[J]. 化工学报 2020(01)
- [10].超临界CO_2放空特性分析与装置设计[J]. 流体机械 2019(12)
- [11].高焓CO_2气流壁面两步催化机制对非平衡气动加热影响的数值模拟[J]. 国防科技大学学报 2020(01)
- [12].铅基堆超临界CO_2复合循环发电系统热力学分析[J]. 工程热物理学报 2020(01)
- [13].CO_2浓度升高对宁夏枸杞果实发育期形态指标及糖分积累影响[J]. 南京林业大学学报(自然科学版) 2020(01)
- [14].设施甜椒土垄和垄嵌基质栽培方式CO_2排放通量日变化比较[J]. 华北农学报 2019(S1)
- [15].重组人血管内皮抑制素联合CO_2点阵激光治疗瘢痕疙瘩的临床疗效观察[J]. 中国药物应用与监测 2019(06)
- [16].试验模拟包气带CO_2变化及对水化学的影响[J]. 水文 2020(01)
- [17].基于超临界CO_2抗溶剂技术的姜黄素固体脂质纳米粒研究[J]. 中药材 2019(07)
- [18].微通道反应器内CO_2传质反应行为研究[J]. 化学工程 2020(01)
- [19].环氧乙烷装置循环气中CO_2浓度对催化剂选择性的影响[J]. 石油和化工设备 2020(02)
- [20].氢氧化钙的固碳功能性研究-CO_2浓度与碳化时间的影响[J]. 功能材料 2020(01)
- [21].胜利油田特低渗透油藏CO_2驱技术研究与实践[J]. 油气地质与采收率 2020(01)
- [22].CO_2-原油混相带形成机理与表征方法[J]. 油气地质与采收率 2020(01)
- [23].高温高盐油藏聚合物微球-CO_2复合驱的适应性[J]. 油田化学 2020(01)
- [24].15%CO_2胁迫下雨生红球藻积累油脂制生物柴油[J]. 太阳能学报 2020(03)
- [25].CO_2泄漏对稻田水基础水质指标的影响研究[J]. 环境科学学报 2020(04)
- [26].供暖用CO_2空气源热泵变频运行性能研究[J]. 太阳能学报 2020(03)
- [27].光子嫩肤联合超脉冲CO_2点阵激光治疗光老化皮肤的临床疗效[J]. 中国激光医学杂志 2020(01)
- [28].超脉冲CO_2激光联合自体表皮移植治疗白癜风的近期和中期效果分析[J]. 中国处方药 2020(03)
- [29].运用手持技术绘制CO_2浓度变化地图——以上海市地铁2号线为例[J]. 化学教学 2020(03)
- [30].2019年全球生物质燃烧CO_2排放研究[J]. 科技风 2020(12)