脱氢氧化论文-吴瑛,朱烨坤,章赟,吴廷华

脱氢氧化论文-吴瑛,朱烨坤,章赟,吴廷华

导读:本文包含了脱氢氧化论文开题报告文献综述及选题提纲参考文献,主要关键词:Zr-Ni-O,乙烷氧化脱氢,改性溶胶-凝胶法,共沉淀法

脱氢氧化论文文献综述

吴瑛,朱烨坤,章赟,吴廷华[1](2019)在《不同方法制备的纳米Zr-Ni-O催化剂乙烷氧化脱氢性能的比较》一文中研究指出用改性溶胶-凝胶法和共沉淀法分别制备了Zr-Ni-O-cp和Zr-Ni-O-sg催化剂并进行了比较,利用XRD,SEM和HRTEM观测催化剂的形貌和结构,通过H_2-TPR和O_2-TPD比较了催化剂的氧化还原性能和氧气吸脱附性能,采用XPS表征了催化剂表面元素价态和结构.结果表明:制备方法对Zr-Ni-O催化剂的物理化学性质有显着的影响,继而影响其ODHE催化性能;与Zr-Ni-O-cp相比,Zr-Ni-O-sg催化剂粒径较小,ZrO_2和NiO之间存在较强的相互作用,有较多的Zr~(4+)取代晶格中的Ni~(2+),晶格氧移动性增加.因此,在乙烷氧化脱氢反应中,Zr-Ni-O-sg催化剂表现出更高的乙烯选择性和更好的抗乙烷裂解能力.(本文来源于《浙江师范大学学报(自然科学版)》期刊2019年04期)

吴志杰,吴宇辰,窦涛[2](2019)在《改性铁酸锌催化剂的合成及其丁烯氧化脱氢活性》一文中研究指出采用共沉淀法制备铁酸锌催化剂,考察改性元素Mg、B、Zr、Ce、La对铁酸锌催化剂结构和丁烯氧化脱氢性能的影响。采用XRD、TEM和N_2吸附-脱附对镧改性铁酸盐催化剂进行金属元素组成的优化研究,确认镧元素在催化剂中存在的形态和作用。结果表明,La改性铁酸锌催化剂晶粒粒径(20~50) nm,具有较大的比表面,主要活性组分是α-Fe_2O_3和ZnFe_2O_(4,)催化剂的活性随着Fe含量的升高而升高,n(Fe)∶n(Zn)∶n(La)=4∶1∶1催化剂具有最高的催化活性,反应温度380℃时,其TOF值2.1×10~(-3) mol_(butene)·mol_(surface-Fe)·s~(-1)。(本文来源于《工业催化》期刊2019年11期)

Nagaraju,Pasupulety,Muhammad,A.Daous,Abdulrahim,A.Al-Zahrani,Hafedh,Driss,Lachezar,A.Petrov[3](2019)在《用于乙苯氧化脱氢制苯乙烯铝-硼催化剂:铝硼组成及制备方法对催化剂性能的影响(英文)》一文中研究指出采用溶胶-凝胶(SG)法合成了不同摩尔比的Al-B催化剂(Al-10B与Al-35B).在450-500°C,乙苯(EB)接触时间为0.54g-cat.s.cm~(-3)的条件下,在氧气和水蒸气存在下对这些催化剂进行催化乙苯脱氢反应.利用NH_3-TPD质谱分析了Al-B催化剂的酸性.扫描电镜图像显示,硼在氧化铝中负载量达15%(Al-15b)时仍分布很好,而在较高的硼含量(Al-25B和Al-35B)催化剂中观察到硼聚集.从本质上讲,在Al和Al-10B催化剂上观察到强度非常弱(T_(max)≤125°C)的酸位,使得EB转化率和苯乙烯产率很低.另一方面,在Al-25B和Al-35B催化剂酸位较弱(T_(max)≤180°C),因而EB转化率较高.然而,在弱-中等强度酸位的Al-15B催化剂上可以得到较高的苯乙烯产率(43.2%)和合理的EB转化率(46%).另外,采用共沉淀法(COP)和浸渍法(IMP)合成了Al-15B催化剂.IMP和COP催化剂的NH_3-TPD-质谱分析结果发现,与NO_x形成有关的酸位点在500°C时将EB转化率分别提高到66%和63%.然而, Al-BSG催化剂中的这些酸位降低,使得500°C时EB转化率为50%.当EB转化率为50%时,在Al-BIMP, Al-BCOP和Al-SG催化剂上苯乙烯选择性分别为73%, 82.5%和84%.因此,不同方法制备的Al-B催化剂,会产生不同强度和密度的酸位,从而影响苯乙烯的形成.(本文来源于《Chinese Journal of Catalysis》期刊2019年11期)

陈福山,赵松林,杨涛,江涛涛,倪珺[4](2019)在《Cu2-MnO_x高效催化1,2,3,4-四氢喹啉氧化脱氢芳构化》一文中研究指出采用新型无模板草酸盐路线制备了系列不同Cu含量的MnO_x催化剂(MnO_x、Cu1-MnO_x、Cu2-MnO_x、Cu3-MnO_x、Cu4-MnO_x、Cu2-450及Cu2-550),并应用于1,2,3,4-四氢喹啉(THQL)氧化脱氢芳构化。通过热重和热流分析(TG-DSC)、X射线衍射(XRD)、N2物理吸附-脱附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)、X射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)、原子吸收光谱(AAS)手段对催化剂进行表征。结果显示在这七种锰氧化物中,Cu2-MnO_x具有高比表面积、增大的介孔平均孔径、较低的还原温度、最高的Mn~(3+)含量和吸附氧含量,最高的Mn~(3+)/Mn~(4+)。Cu2-MnO_x在温和的反应条件下,以廉价的空气为氧化剂、无碱添加剂的情况下对THQL芳构化转化率和喹啉(QL)选择性分别达99.1%、97.2%。催化剂套用五次后转化率还可达95.8%,选择性随着套用次数增加略有降低,这可能是Cu元素的流失所致。催化剂无定型结构、Mn~(3+)和吸附氧含量,Mn~(3+)/Mn~(4+)、晶格氧的流动性及CuO和MnO_x的协同作用是高催化活性的关键因素。(本文来源于《物理化学学报》期刊2019年07期)

周梦影[5](2019)在《氮掺杂石墨烯的制备及负载型催化剂的丙烷氧化脱氢催化性能研究》一文中研究指出近十年来,由于非金属催化剂具有成本低、可靠性高、生物相容性和可持续性等优点,人们对非金属催化剂的研究越来越感兴趣。石墨烯(RGO)本身具有独特的晶体结构和物理性能而受到研究者们的青睐。对石墨烯进行氮掺杂表面修饰得到氮掺杂石墨烯(N-RGO),较纯石墨烯具有更为优异的性能。目前市场丙烯供不应求,制备丙烯的传统工艺已经难以满足人们的需求,丙烷氧化脱氢制丙烯体系是催化领域的研究热点,首要前提是制备具有高寿命和高丙烯选择性的催化剂。氮原子与O_2分子的强相互作用,可活化分子氧,增强催化剂的反应活性,因此对石墨烯表面进行改性,可使其具有较好的丙烷氧化脱氢催化性能。NiO丙烷氧化脱氢转化率高但选择性低,因此常与载体结合成为复合材料使用,而石墨烯由于其良好的电学性能、部分缺陷位和巨大的比表面积,使其成为NiO复合改性的理想材料。本文以石墨粉为原料,采用Hummers法合成GO,然后以GO为前驱体,利用溶剂热法和化学氧化还原法两种方法制备出石墨烯,探究两种方法对RGO的结构性质的影响,最后选用溶剂热法负载NiO,并进行氮掺杂修饰石墨烯制备了N-RGO催化剂,并对制得的一系列催化剂进行XRD,TEM,XPS,Raman,热重分析等一系列表征,并评价其丙烷氧化脱氢反应的催化性能,考察原料气流速和烷氧比对其催化性能的影响。具体的研究内容及结果如下:1.以抗坏血酸为还原剂,采用化学氧化还原法制备石墨烯,抗坏血酸与GO用量比为2:1时,超声1 h,得到石墨烯结构完整。以无水乙醇为溶剂的溶剂热法,在160 ℃、反应12 h可以将GO还原制备出RGO,操作过程简单。2.采用溶剂热法制备的NiO/RGO催化剂,空速40 mL/min、烷氧比为1:1,1%NiO/RGO催化剂的丙烷氧化脱氢性能最好,在500 ℃时,其丙烷转化率28.66%,丙烯选择性为28.08%,丙烯收率8.05%。NiO均匀分散在石墨烯上,两者之间产生一定的协同作用。3.采用溶剂热法制备氮掺杂石墨烯催化剂,空速60 mL/min、烷氧比为1:1,N-RGO(Ⅲ)催化剂的丙烷氧化脱氢性能最好,在500℃时,其丙烷转化率为31.64%,丙烯选择性为46.44%,丙烯收率14.69%。1%NiO/N-RGO(Ⅲ)催化剂的丙烯选择性低温高达60.79%,氮掺杂使石墨烯的纳米层结构堆积更为紧密,并且呈现出褶皱的薄纱状形貌,增加了石墨烯的缺陷位,氮原子与氧分子发生强相互作用,进一步增强了分子氧的活化能力,从而提高其反应活性。(本文来源于《内蒙古师范大学》期刊2019-06-18)

周彤,邓德刚,秦丽姣[6](2019)在《湿式氧化工艺处理丙烷脱氢装置含硫废碱液的工业应用》一文中研究指出介绍了湿式氧化(WAO)工艺在丙烷脱氢装置含硫废碱液处理上的成功应用。在反应温度190℃、反应压力3. 0 MPa的条件下,废碱液经过本装置处理后,出水S2-小于1. 0 mg/L、COD去除率大于99%,达到设计要求。目前,已建成多套以湿式氧化工艺为核心的丙烷脱氢废碱液处理装置,为此类废碱液的高效处理提供了一条新途径。(本文来源于《安全、健康和环境》期刊2019年06期)

杜凯敏,范杰[7](2019)在《丙烷氧化脱氢制丙烯研究进展》一文中研究指出开发新型丙烯制备工艺对于满足人们日益增长的丙烯需求具有重要意义。由于商业化无氧脱氢技术存在热力学平衡限制、反应温度高、催化剂易积炭等不足,近年来,人们将研究重心转向了丙烷氧化脱氢技术。本文简述了丙烷氧化脱氢制丙烯的发展现状,综述了近年来文献报道的丙烷氧化脱氢催化剂体系(V基、Cr基、Co基、Ni基、Mo基、Pt基、Ce基和非金属基催化剂)、机理研究和不同氧化剂选择,并对各自的优势和不足进行了简单分析。分析发现,虽然目前丙烷氧化脱氢催化剂的种类非常广泛,但产物丙烯的收率仍有待提高,机理研究也需要更加系统和深入。最后指出,系统研究丙烷氧化脱氢机理,并在此基础上开发先进催化剂,进一步提高丙烯的选择性和收率是未来丙烷氧化脱氢研究的重要方向。(本文来源于《化工进展》期刊2019年06期)

张文婷,敬方梨,黎志敏,罗仕忠[8](2019)在《负载型SBA-15铬基催化剂的制备及其催化CO_2氧化乙烷脱氢性能》一文中研究指出采用水热法制得具有不同孔径的SBA-15材料;采用浸渍法制备了负载型铬基SBA-15催化剂,其结构和性能经XRD、低温氮气吸附脱附、氢气程序升温还原和X-射线光电子能谱表征。并研究了催化剂的CO_2氧化乙烷催化脱氢性能。结果表明:孔径对活性组分在SBA-15孔道内外的分布有影响,进而影响其催化性能。孔径为8.14 nm时,乙烷转化率25.8%,乙烯选择性81.0%。(本文来源于《合成化学》期刊2019年06期)

檀东辰[9](2019)在《MO_x/Al_2O_3催化CO_2氧化乙苯脱氢反应性能的研究》一文中研究指出苯乙烯是最重要的基础化工产品之一,广泛用于生产塑料、树脂和合成橡胶等。工业上,苯乙烯主要由乙苯在大量过热水蒸汽下高温(600-650℃)脱氢制得,能耗巨大。因此,迫切需要开发新工艺,以解决传统乙苯脱氢工艺的高能耗问题。用CO_2作为温和氧化剂,取代过热水蒸汽氧化乙苯脱氢制苯乙烯不仅能降低反应温度,大幅度降低苯乙烯生产能耗,还能提高乙苯脱氢反应效率。为此,本论文对节能、高效和环境友好的CO_2氧化乙苯脱氢制苯乙烯绿色新工艺进行研究,探究催化剂的构效关系和失活机理,设计和研制性能优良的催化剂体系,为其工业化应用提供理论依据和技术支撑。同时,CO_2的资源化利用对推动化工过程的节能减排和低碳社会的构建也具有重要意义。论文主要研究了CeO_2/Al_2O_3和TiO_2/Al_2O_3催化CO_2氧化乙苯脱氢制苯乙烯的反应性能和TiO_2/Al_2O_3催化剂的失活行为。通过氮吸附、XRD、NH_3-TPD、CO_2-TPD、H_2-TPR、Raman、XPS、TGA等技术手段对催化剂的物理化学性质进行了详细表征,阐述了催化剂结构与其性能的关系,揭示了TiO_2/Al_2O_3催化剂的活性相及其失活原因。得出如下结论:1.CeO_2/Al_2O_3和TiO_2/Al_2O_3是CO_2氧化乙苯脱氢反应适宜的催化剂。与CeO_2/Al_2O_3相比,TiO_2/Al_2O_3催化剂具有更高的催化活性。以仲丁醇铝为铝源,焙烧温度为600℃,采用溶胶凝胶法制备的40 wt%TiO_2/Al_2O_3催化剂表现出最佳的催化性能,在550℃和0.1MPa反应条件下,乙苯初始转化率与苯乙烯选择性分别为50%和98%,反应50 h后,催化剂活性有轻微下降。CO_2气氛下TiO_2/Al_2O_3催化剂上的乙苯转化率明显高于惰性N_2气氛下,表明CO_2促进了乙苯脱氢反应。2.CeO_2/Al_2O_3和TiO_2/Al_2O_3催化剂性能与制备方法密切相关。与水热合成法和浸渍法相比,溶胶凝胶法制备的催化剂具有更大的比表面积与孔径、更强的金属氧化物-载体相互作用以及丰富的中强酸酸性中心,提高了活性组分的分散性和乙苯吸附能力,抑制了钛物种的还原和类石墨积炭的生成,从而在CO_2氧化乙苯脱氢反应中表现出良好的催化活性和稳定性。对于TiO_2/Al_2O_3催化剂,高分散的锐钛矿TiO_2是CO_2氧化乙苯脱氢反应的活性相。3.积碳和钛物种的深度还原是TiO_2/Al_2O_3催化剂失活的主要原因。积碳量与催化剂活性有关,催化剂活性越高,转化的乙苯量越大,积碳越多。当反应温度为550℃时,在反应初期,积碳量随反应时间的增加而增加,TiO_2/Al_2O_3催化剂的失活主要归因于积碳;随着反应的继续进行,积碳速率减缓,活性钛物种的深度还原成为TiO_2/Al_2O_3催化剂失活的重要因素。(本文来源于《太原理工大学》期刊2019-06-01)

杜凯敏,郝梦佳,李志年,洪伟,刘娟娟[10](2019)在《聚磷酸配体修饰调控氧化镍纳米颗粒在丙烷氧化脱氢反应中的选择性(英文)》一文中研究指出利用有机配体对金属纳米颗粒表面进行修饰来构建配体–金属界面是一种简单且高效的调控纳米催化剂催化选择性和稳定性的策略.这种调控主要来源于配体与金属间的电子效应及位阻效应.然而到目前为止,这一策略多局限于液相反应,对于高温(>300 oC)气相反应涉及不多,这主要是因为高温反应条件下有机配体分子不稳定.因此,开发稳定的配体及修饰方法是克服该局限性并将配体修饰策略应用到一些重要的高温反应中的关键.本文以聚磷酸根作为一种高效且热稳定性良好的无机配体对氧化镍纳米颗粒表面进行修饰.红外光谱、X射线光电子能谱、X射线衍射和透射电镜等分析证实,聚磷酸物种原位修饰在氧化镍表面之后,氧化镍纳米颗粒的物性结构未发生明显变化,但聚磷酸物种与NiO之间存在一定的电子相互作用.将具有不同磷修饰量的氧化镍催化剂应用于极具挑战的丙烷氧化脱氢制丙烯反应中.结果表明,聚磷酸修饰后,氧化镍纳米催化剂的丙烯选择性有了极大提高.相比单纯纳米氧化镍(10%丙烷转化率, 19%丙烯选择性),经聚磷酸配体修饰后,在相同丙烷转化率下产物丙烯的选择性提高了2–3倍(10%丙烷转化率, 66%丙烯选择性).稳定性实验(450 oC, 70 h)和热重分析等结果表明,聚磷酸物种具有良好的热稳定性,可作为稳定的配体用于长时间高温催化测试.进一步采用动力学实验和丙烯脱附等方法及理论计算对反应机理进行了探究,认为配体的引入可以减弱丙烯在催化剂表面的吸附亲和性,进而提高丙烯选择性.本文研究结果证实了配体修饰这一策略在高温气相反应中应用的可行性,该策略有望在其他一些重要高温反应中得到进一步应用.(本文来源于《催化学报》期刊2019年07期)

脱氢氧化论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

采用共沉淀法制备铁酸锌催化剂,考察改性元素Mg、B、Zr、Ce、La对铁酸锌催化剂结构和丁烯氧化脱氢性能的影响。采用XRD、TEM和N_2吸附-脱附对镧改性铁酸盐催化剂进行金属元素组成的优化研究,确认镧元素在催化剂中存在的形态和作用。结果表明,La改性铁酸锌催化剂晶粒粒径(20~50) nm,具有较大的比表面,主要活性组分是α-Fe_2O_3和ZnFe_2O_(4,)催化剂的活性随着Fe含量的升高而升高,n(Fe)∶n(Zn)∶n(La)=4∶1∶1催化剂具有最高的催化活性,反应温度380℃时,其TOF值2.1×10~(-3) mol_(butene)·mol_(surface-Fe)·s~(-1)。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

脱氢氧化论文参考文献

[1].吴瑛,朱烨坤,章赟,吴廷华.不同方法制备的纳米Zr-Ni-O催化剂乙烷氧化脱氢性能的比较[J].浙江师范大学学报(自然科学版).2019

[2].吴志杰,吴宇辰,窦涛.改性铁酸锌催化剂的合成及其丁烯氧化脱氢活性[J].工业催化.2019

[3].Nagaraju,Pasupulety,Muhammad,A.Daous,Abdulrahim,A.Al-Zahrani,Hafedh,Driss,Lachezar,A.Petrov.用于乙苯氧化脱氢制苯乙烯铝-硼催化剂:铝硼组成及制备方法对催化剂性能的影响(英文)[J].ChineseJournalofCatalysis.2019

[4].陈福山,赵松林,杨涛,江涛涛,倪珺.Cu2-MnO_x高效催化1,2,3,4-四氢喹啉氧化脱氢芳构化[J].物理化学学报.2019

[5].周梦影.氮掺杂石墨烯的制备及负载型催化剂的丙烷氧化脱氢催化性能研究[D].内蒙古师范大学.2019

[6].周彤,邓德刚,秦丽姣.湿式氧化工艺处理丙烷脱氢装置含硫废碱液的工业应用[J].安全、健康和环境.2019

[7].杜凯敏,范杰.丙烷氧化脱氢制丙烯研究进展[J].化工进展.2019

[8].张文婷,敬方梨,黎志敏,罗仕忠.负载型SBA-15铬基催化剂的制备及其催化CO_2氧化乙烷脱氢性能[J].合成化学.2019

[9].檀东辰.MO_x/Al_2O_3催化CO_2氧化乙苯脱氢反应性能的研究[D].太原理工大学.2019

[10].杜凯敏,郝梦佳,李志年,洪伟,刘娟娟.聚磷酸配体修饰调控氧化镍纳米颗粒在丙烷氧化脱氢反应中的选择性(英文)[J].催化学报.2019

标签:;  ;  ;  ;  

脱氢氧化论文-吴瑛,朱烨坤,章赟,吴廷华
下载Doc文档

猜你喜欢