本文主要研究内容
作者(2019)在《Studies on Factors Influencing Hydrodynamic Characteristics of Plates Used in Artificial Reefs》一文中研究指出:As a simplified model of artificial reefs, a series of plate models punched with square or circular openings are designed to investigate the effects of openings on the hydrodynamic characteristics of artificial reefs. The models are grouped by various opening numbers and opening-area ratios. They are physically tested in a water flume or used in the numerical simulation to obtain the drag force in the uniform flow with different speeds. The simulation results are found in good agreement with the experimental measurements. By the non-dimensional analysis, the drag coefficient specified to each model is achieved and the effects of openings are examined. It is found that the key factor affecting the drag coefficient is the open-area ratio. Generally, the drag coefficient is a linear function of the open area ratio with a minus slope. The empirical formulae for the square and circular openings respectively are deduced by means of the multiple regression analysis based on the measured and numerical data. They will be good references for the design of new artificial reefs. As a result of numerical simulation, the vorticity contours and pressure distribution are also presented in this work to better understand the hydrodynamic characteristics of different models.
Abstract
As a simplified model of artificial reefs, a series of plate models punched with square or circular openings are designed to investigate the effects of openings on the hydrodynamic characteristics of artificial reefs. The models are grouped by various opening numbers and opening-area ratios. They are physically tested in a water flume or used in the numerical simulation to obtain the drag force in the uniform flow with different speeds. The simulation results are found in good agreement with the experimental measurements. By the non-dimensional analysis, the drag coefficient specified to each model is achieved and the effects of openings are examined. It is found that the key factor affecting the drag coefficient is the open-area ratio. Generally, the drag coefficient is a linear function of the open area ratio with a minus slope. The empirical formulae for the square and circular openings respectively are deduced by means of the multiple regression analysis based on the measured and numerical data. They will be good references for the design of new artificial reefs. As a result of numerical simulation, the vorticity contours and pressure distribution are also presented in this work to better understand the hydrodynamic characteristics of different models.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Ocean University of China的,发表于刊物Journal of Ocean University of China2019年01期论文,是一篇关于,Journal of Ocean University of China2019年01期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Ocean University of China2019年01期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。