图嵌入模型及其在数据降维中的应用

图嵌入模型及其在数据降维中的应用

论文摘要

作为机器学习的重要领域之一,降维算法已经越来越引起人们的重视并且在理论和算法研究方面取得了巨大的进步。目前降维算法研究的一个热点方向是线性图嵌入模型,本文主要针对基于图嵌入模型的降维算法进行了研究,主要成果如下:首先针对非高斯分布样本集的监督降维问题,为了在实现降维的同时能够兼顾样本的邻域保持,本文基于图的线性嵌入和边缘Fisher分析模型提出了一种新的子空间学习方法——近邻保持-边缘判别嵌入模型。该方法在减小类内离散度的同时增大不同类之间样本的边缘距离,并能保持类内样本的近邻结构,因此取得了良好的降维效果。其次为了解决半监督学习中只存在少量标记样本和大量未标记样本的情况,可以用稀疏表示的方法建立所有样本间的关系图L1-Graph,并基于图中边的权值给出了一种新的类标传递算法。实验结果表明该类标传递算法相比线性近邻传递算法具有更好的效果。最后为了解决非负矩阵分解方法在降维过程中只注重重构误差而不能刻画高维空间中样本间相似性的问题,本文给出了一个基于图嵌入的约束目标函数,通过增加正则项使高维空间中样本间的稀疏表示关系在低维空间中得以保持。在几类数据库上进行的测试结果表明了该算法的有效性。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  • 1.1 研究背景及意义
  • 1.2 研究进展及现状
  • 1.2.1 基于线性子空间的降维算法
  • 1.2.2 基于流形学习的降维算法
  • 1.2.3 基于图模型的降维算法
  • 1.3 论文的研究内容及章节安排
  • 第二章 图嵌入模型
  • 2.1 引言
  • 2.2 高维数据的图模型
  • 2.3 图嵌入模型
  • 2.4 基于图嵌入模型的降维方法
  • 2.5 本章小结
  • 第三章 近邻保持的边缘判别图嵌入模型
  • 3.1 引言
  • 3.2 边缘Fisher 分析
  • 3.3 近邻保持的边缘Fisher 分析
  • 3.3.1 NP-MDE 算法
  • 3.3.2 算法实现步骤
  • 3.4 实验结果及分析
  • 3.5 本章小结
  • 第四章 基于稀疏表示的图嵌入模型
  • 4.1 引言
  • 4.2 基于稀疏表示的L1-Graph 建立
  • 4.3 基于L1-Graph 的类标传递
  • 4.4 基于L1-Graph 的非负矩阵分解
  • 4.4.1 非负矩阵分解
  • 4.4.2 基于L1-Graph 的非负矩阵分解
  • 4.5 实验结果及分析
  • 4.5.1 两种类标传递算法的比较
  • 4.5.2 降维算法的比较
  • 4.6 本章小结
  • 第五章 总结与展望
  • 5.1 总结
  • 5.2 展望
  • 致谢
  • 参考文献
  • 攻读硕士学位期间获得的科研成果及参与的科研项目
  • 相关论文文献

    标签:;  ;  

    图嵌入模型及其在数据降维中的应用
    下载Doc文档

    猜你喜欢