论文摘要
本文研究四阶奇异边值问题 其中f:(0,1)×[0,∞)→[0,∞)连续。 在f满足次线性条件时,通过运用上下解方法得到了问题存在C~2[0,1]和C~3[0,1]正解的充分必要条件及C~1[0,1]正解存在的充分条件。同时也给出了唯一性结果。在f满足超线性条件时,通过运用锥拉伸与压缩不动点定理得到了问题存在至少一个C~1[0,1],C~2[0,1],C~3[0,1]正解的充分条件,最后,也建立了所讨论问题多个正解的存在性定理。
论文目录
相关论文文献
- [1].非线性奇异边值问题的高效数值算法[J]. 高等学校计算数学学报 2019(04)
- [2].一类2n阶非线性奇异边值问题的对称正解[J]. 南华大学学报(自然科学版) 2017(03)
- [3].一类四阶奇异边值问题对称正解的最优存在性(英文)[J]. 数学杂志 2016(06)
- [4].一类四阶奇异边值问题正解的存在性[J]. 潍坊学院学报 2011(04)
- [5].一类n-阶m-点奇异边值问题的正解[J]. 系统科学与数学 2010(01)
- [6].二阶奇异边值问题正解的存在性[J]. 泰山学院学报 2010(03)
- [7].一类四阶奇异边值问题正解的存在性[J]. 数学物理学报 2009(01)
- [8].n阶非线性两点奇异边值问题单调正解的存在性[J]. 徐州师范大学学报(自然科学版) 2009(01)
- [9].一类非线性奇异边值问题正解的唯一性[J]. 数学的实践与认识 2009(11)
- [10].一类四阶次线性奇异边值问题的正解[J]. 中国石油大学学报(自然科学版) 2009(06)
- [11].四阶奇异边值问题的正解[J]. 佳木斯大学学报(自然科学版) 2008(06)
- [12].一类超线性四阶奇异边值问题的正解[J]. 山东科技大学学报(自然科学版) 2008(01)
- [13].四阶奇异边值问题两个正解的存在性[J]. 应用泛函分析学报 2008(01)
- [14].三阶非线性奇异边值问题正解存在性[J]. 数学的实践与认识 2008(18)
- [15].一类四阶奇异边值问题正解的存在性[J]. 曲阜师范大学学报(自然科学版) 2008(04)
- [16].一类奇异边值问题的正解[J]. 应用泛函分析学报 2016(01)
- [17].一类奇异边值问题正解的存在性和多重性[J]. 井冈山大学学报(自然科学版) 2012(01)
- [18].一类非线性奇异边值问题正解的存在性(英文)[J]. 江苏师范大学学报(自然科学版) 2012(02)
- [19].二阶m点奇异边值问题的多重正解[J]. 数学的实践与认识 2011(01)
- [20].一类非线性奇异边值问题的正解[J]. 数学的实践与认识 2008(13)
- [21].常微分方程组奇异边值问题的数值方法[J]. 湖北工业大学学报 2008(04)
- [22].变时滞二阶奇异边值问题的正解和特征区间[J]. 应用泛函分析学报 2013(01)
- [23].非线性奇异边值问题正解的局部唯一性[J]. 应用数学 2010(01)
- [24].八阶奇异边值问题精确解的表达形式[J]. 数学物理学报 2010(01)
- [25].一类非线性奇异边值问题正解的唯一性[J]. 应用数学 2010(02)
- [26].一类奇异边值问题三解的存在性[J]. 南京信息工程大学学报(自然科学版) 2009(04)
- [27].具有时滞和积分边界条件的三阶奇异边值问题的正解(英文)[J]. 应用数学 2012(03)
- [28].抽象空间中二阶非线性奇异边值问题的正解[J]. 工程数学学报 2009(01)
- [29].三阶奇异边值问题的正解[J]. 科学技术与工程 2009(14)
- [30].三阶奇异边值问题对称正解的最优存在性(英文)[J]. 工程数学学报 2010(04)