一类非线性发展方程的非行波解的构造

一类非线性发展方程的非行波解的构造

论文摘要

本文根据吴文俊院士提出的数学机械化的思想,在导师张鸿庆教授“AC=BD”理论的指导下,以构造性的变换和符号计算为工具,研究在弹性力学、流体力学、空气动力学、等离子体物理、生物物理和化学物理等现代科学技术中引出的非线性发展方程的若干求精确解的方法。 第一章介绍了孤立子理论的历史与发展,数学机械化思想与计算机代数,以及非线性发展方程的若干求解方法,如反散射方法,对称与微分方程约化,Backlund变换和Darboux变换方法,Hirota双线性方法,Painleve奇性分析法,AC=BD框架下的精确求解等。 第二章介绍了张鸿庆教授提出的“AC=BD”理论,并在“AC=BD”理论框架下考虑非线性发展方程(组)精确解的构造。给出了“AC=BD”理论的基本思想和应用,通过具体的变换给出了构造C-D对的算法。 第三章主要介绍了我们推广的两种直接求解非线性发展方程的方法-Extended F展开法和一般的Riccati方程展开法。并将它们分别应用到(2+1)维KdV方程,(2+1)-维breaking soliton方程以及(2+1)维Broer-Kaup方程,获得了这些方程许多新的精确解(孤波解、类孤波解、周期解、类周期解、有理解等)。 第四章我们首先介绍了Painleve奇性分析的一般理论和截断展开方法。然后运用Laurent级数展开法对(2+1)-维Nizlmik-Novikov-Veselov方程的解进行Laurent级数有限截断展开,从而得到了它的Backlund变换,利用符号计算,进一步得到了该方程形式丰富的精确解(包括类孤子解,有理解等)。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  • §1.1 孤立子理论的历史与发展
  • §1.2 数学机械化思想与计算机代数
  • §1.3 求解非线性演化方程的若干方法
  • 第二章 AC=BD模式下微分方程(组)的求解方法
  • §2.1 “AC=BD”模式及其应用
  • §2.2 C-D对的构造方法
  • 第三章 一类非线性发展方程的精确解
  • §3.1 广义的Extended-F展开方法及其应用
  • §3.2 一般的Riccati方程展开算法和(2+1)-维可积Broer-Kaup方程的类孤子解
  • 第四章 Painleve奇性分析与Backlund变换
  • §4.1 Painleve奇性分析的一般理论与WTC方法
  • §4.2 Backlund变换和(2+1)-维NNV方程的精确解
  • 参考文献
  • 攻读硕士学位期间发表的论文以及获奖情况
  • 致谢
  • 大连理工大学学位论文版权使用授权书
  • 相关论文文献

    • [1].一类带小参数交错扩散竞争方程组行波解的存在性[J]. 应用数学 2018(01)
    • [2].扩散捕食-食饵系统的周期行波解(英文)[J]. 杭州师范大学学报(自然科学版) 2017(04)
    • [3].一类经典趋化性模型行波解的存在性[J]. 数学物理学报 2015(06)
    • [4].非局部时滞竞争扩散系统行波解[J]. 中山大学学报(自然科学版) 2015(03)
    • [5].一类广义Dullin-Gottwald-Holm方程的行波解分岔(英文)[J]. 上海师范大学学报(自然科学版) 2015(03)
    • [6].一类非局部反应-扩散方程基于时滞偏微方程的行波解(英文)[J]. 应用数学 2020(04)
    • [7].变系数非线性薛定谔方程的精确行波解[J]. 贵州大学学报(自然科学版) 2019(04)
    • [8].一维格上时滞微分系统的行波解[J]. 应用数学和力学 2018(05)
    • [9].广义可压缩杠杆方程的精确行波解[J]. 浙江理工大学学报(自然科学版) 2018(05)
    • [10].(2+1)维Broer-Kaup-Kupershmidt方程组的行波解[J]. 数学的实践与认识 2015(16)
    • [11].势Yu-Toda-Sasa-Fukuyama方程新形式的精确行波解[J]. 滨州学院学报 2012(06)
    • [12].一类Zakharov-Kuznetsov型方程的周期行波解[J]. 天中学刊 2011(02)
    • [13].广义特殊Tzitzeica-Dodd-Bullough类型方程的行波解(英文)[J]. 数学杂志 2009(01)
    • [14].黏性水波振荡型行波解的存在性[J]. 物理学报 2009(02)
    • [15].广义Zakharov-Kuznetsov方程的显式行波解[J]. 山东理工大学学报(自然科学版) 2009(04)
    • [16].一类时间周期的时滞竞争系统行波解的存在性[J]. 应用数学和力学 2020(06)
    • [17].(2+1)维广义耗散Ablowitz-Kaup-Newell-Segur方程的行波解分岔[J]. 四川师范大学学报(自然科学版) 2019(05)
    • [18].一类非线性数学物理方程行波解的分析[J]. 天津师范大学学报(自然科学版) 2015(01)
    • [19].一维复Ginzburg-Landau方程的分岔及其精确行波解[J]. 厦门大学学报(自然科学版) 2014(02)
    • [20].(2+1)-维耗散长水波方程的非行波解[J]. 西北师范大学学报(自然科学版) 2013(05)
    • [21].Landau-Ginzbrug-Higgs方程的新精确行波解(英文)[J]. 西安工程大学学报 2011(03)
    • [22].Gross-Pitaevskii方程的复行波解[J]. 量子电子学报 2008(02)
    • [23].广义的(3+1)维Kadomtsev-Petviashvili方程的动力分析及其行波解[J]. 数学物理学报 2019(03)
    • [24].无穷格子系统的新型周期行波解[J]. 浙江师范大学学报(自然科学版) 2012(03)
    • [25].一类非线性演化方程新的行波解[J]. 纯粹数学与应用数学 2011(02)
    • [26].一类广义Hirota-Satsuma Coupled KdV系统的新精确行波解[J]. 青岛理工大学学报 2011(03)
    • [27].广义Degasperis-Proces方程的非解析行波解[J]. 工程数学学报 2008(04)
    • [28].一类非线性方程的行波解分支[J]. 数学的实践与认识 2016(02)
    • [29].一个新的两分量系统的行波解[J]. 四川师范大学学报(自然科学版) 2016(02)
    • [30].利用指数函数法求Kudryashov-Sinelshchikov方程的精确行波解[J]. 红河学院学报 2013(02)

    标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

    一类非线性发展方程的非行波解的构造
    下载Doc文档

    猜你喜欢