论文摘要
本文简述并分析了现代投资组合选择的理论发展过程,介绍了不同的模型方法以及它们之间的区别和联系。详细介绍了均值-方差模型和均值-VaR模型,讨论当协方差阵正定和奇异两种情形下,分别给出了均值-方差模型解析解的一般表达式,通过比较可以看出协方差正定是协方差阵奇异情形下的一种特例,同时讨论了均值-方差模型的有效前沿和有效组合问题。此外,本文不仅对蒋春福,戴永隆(2008)利用矩阵的广义逆方法研究了有效前沿和有效组合的解析解的问题中有些不完整的结论给出适当的修正,全面讨论了1。和μ与协方差阵生成的线性子空间在所有关系下,给出了组合前沿的精确表达式。以Markowitz的均值-方差资产组合选择模型为基础,进一步研究了均值-VaR模型,给出了协方差阵奇异情形下,均值-VaR模型的最优解表达式,通过与经典的均值-方差模型的解析解的比较,发现了只有恰当的选择置信水平,均值-VaR模型的最优解才存在。最后,在正态分布假设条件下,对均值-方差资产组合选择模型进行拓展,并对基于方差、VaR风险度量准则时,得到证券组合的有效前沿以及有效投资组合,并对资产组合有效前沿进行比较。