论文摘要
本文主要研究的是一维非局部初边值问题.在第一章引言中,简单介绍了非局部问题的应用,研究现状以及本文要研究的主要问题.第二章是本文需要的基本理论.第三章运用有限元方法解决非局部椭圆问题.首先讨论简单的非局部齐次边值椭圆方程(注意:这里的齐次与一般意义不同),为此引入了H1空间的完备子空间H*1,定义了H*1到H01的投影算子P,证明了在的前提下, H*1空间中||u||1与|u|1是等价的,同时|Pu|1与|u|1也是等价的,最后定义了有限元空间,给出了有限元解的L2最优误差估计;然后讨论了一般的非局部齐次边值椭圆方程(齐次意义同上),证明了在的前提下,方程的弱解和有限元解都是存在唯一的,并且给出了两个有代表性的算例,证明了我们这个方法的有效性.第四章讨论非局部抛物问题,对于齐次抛物问题,给出了两种离散方式;非齐次问题则要转换为齐次问题;最后用一个算例支持我们的理论.第五章讨论带源项的抛物问题,对于齐次和非齐次问题分别给出了相应的向后Euler-Galerkin离散格式,最后用两个算例验证了我们方法的正确性.
论文目录
相关论文文献
- [1].偏微分方程特征值问题的弱有限元方法[J]. 中国科学:数学 2019(12)
- [2].基于比例边界有限元方法的拱坝子结构分区形式研究[J]. 世界地震工程 2019(04)
- [3].基于“理论引领、应用并行、案例示范”理念的有限元方法教学改革与实践[J]. 教育教学论坛 2020(06)
- [4].浅谈能力导向体系下的工科有限元教学[J]. 教育教学论坛 2020(20)
- [5].拋物型界面问题的变网格有限元方法[J]. 计算数学 2020(02)
- [6].弱有限元方法简论[J]. 计算数学 2016(03)
- [7].形状自由的高性能有限元方法研究的一些进展[J]. 工程力学 2017(03)
- [8].一类抛物方程的降基连续时空有限元方法[J]. 应用数学 2017(03)
- [9].求解变系数Cahn-Hilliard-Brinkman方程有限元方法的误差分析[J]. 应用数学 2020(02)
- [10].两点边值特征值问题的弱有限元方法[J]. 科学技术创新 2020(18)
- [11].应用型本科院校《有限元方法》教学改革分析[J]. 教育现代化 2019(15)
- [12].一类退化凸问题的非协调自适应有限元方法[J]. 应用数学与计算数学学报 2016(04)
- [13].有限元方法应用研究现状[J]. 科技致富向导 2013(23)
- [14].对流扩散方程的间断时空有限元方法的误差估计[J]. 应用数学 2011(01)
- [15].“偏微分方程数值解”中有限元方法的教学探讨[J]. 中国科技信息 2011(16)
- [16].广义有限元方法研究进展[J]. 应用力学学报 2009(01)
- [17].流体相互作用模型的粘性分离有限元方法[J]. 数学物理学报 2020(05)
- [18].有限元方法应用于特发性脊柱侧凸研究的进展[J]. 实用骨科杂志 2016(01)
- [19].椭圆型偏微分方程的弱有限元方法 献给林群教授80华诞[J]. 中国科学:数学 2015(07)
- [20].陀螺系统时间有限元方法[J]. 振动与冲击 2012(13)
- [21].发展型方程的时间间断时空有限元方法[J]. 数学进展 2011(05)
- [22].捕获运动界面的有限元方法[J]. 辽宁工程技术大学学报(自然科学版) 2009(02)
- [23].有限元方法在破前漏临界裂纹计算中的应用[J]. 核科学与工程 2018(04)
- [24].有限元方法应用于一维屏蔽计算的研究[J]. 华电技术 2016(01)
- [25].液体晃荡问题的比例边界有限元方法研究[J]. 山西建筑 2015(13)
- [26].应用有限元方法分析热处理炉的钢结构[J]. 工业炉 2013(02)
- [27].超高压输电线路工频电场分析的比例边界有限元方法[J]. 水电能源科学 2011(03)
- [28].超材料中时域有限元方法的进展[J]. 纯粹数学与应用数学 2020(02)
- [29].利用有限元方法预测女鞋底曲挠度的可行性研究[J]. 皮革科学与工程 2019(04)
- [30].Brinkman-Forchheimer方程的加罚有限元方法[J]. 工程数学学报 2017(05)