张志强:膜—污染层分形界面效应研究与膜分形结构渗透模型的建立论文

张志强:膜—污染层分形界面效应研究与膜分形结构渗透模型的建立论文

本文主要研究内容

作者张志强(2019)在《膜—污染层分形界面效应研究与膜分形结构渗透模型的建立》一文中研究指出:当前,膜污染是困扰膜应用的主要问题之一,国内外针对膜污染进行了大量研究。在以往研究基础上,引入分形理论,明确了膜微形貌结构定量表征的方法,探明了分形维数与宏观膜结构参数的关系,建立了膜分形结构渗透模型;结合xDLVO理论,分别计算了膜-污染物及污染物-污染物之间界面作用能,并与膜污染趋势和不可逆膜污染阻力进行对照,探讨了不同结构和性质的膜污染特征物质对不同物化特性膜的污染规律,揭示了膜-污染层的界面污染机制。研究结果如下所示:(1)利用场发射扫描电镜FESEM和专业图像处理软件ImageJ对六种不同切割分子量PES膜和切割分子量100 kDa PVDF膜微形貌结构进行表征,图像处理和数据分析,获得了膜表面开孔率ε、孔密度、膜孔圆度、最大孔径λmax、最小孔径λmin等膜结构参数;同时测定了膜孔隙率、平均孔径、膜分离层厚度、纯水接触角等参数;并将上述表征参数与切割分子量之间进行了定性对比分析。(2)采用小岛法、盒维法和相关函数法测定了切割分子量为50 kDa PES膜在不同放大倍数(20000X、50000X、100000X)下的膜面积分维Df。前两种方法计算不同放大倍数下的Df,差值较大,而相关函数法计算的Df,稳定性好,其差值小于0.2%,所以优选出相关函数法作为膜面积分维测定方法。利用P-d关系和分形标度关系,分别计算出膜孔形分维DS和平均迂曲度分维DT。(3)定性分析了膜孔形分维Ds、膜面积分维Df和平均迂曲度分维DT与膜孔形、膜孔隙结构和流线弯曲程度的关联;以线性拟合和多项式拟合两种方式描述了Df,DT和膜表面开孔率ε的关系,Df与ε呈现良好的正相关关系,DT与ε呈较好的负相关关系,Df越大,孔隙在膜中发育的越充分,相应的流线越舒缓,DT越小,Df、DT之间呈现良好的线性负相关关系。(4)以Hagen-Poiseuille公式为主,引入膜孔形分维DS,迂曲度分维DT,同时考虑膜材料亲疏水性和膜孔隙分形特征,结合分形理论和方法,建立了基于修正型Hagen-Poiseuille方程的膜分形结构渗模型,模型表达式中没有经验常数,每一个参数都有明确的物理意义。(5)采用三维荧光光谱、FTIR光谱和激光纳米粒度仪表征了三种特征污染物BSA、HA、SA的荧光特性、官能团信息和粒径分布;采用FTIR光谱和原子力显微镜表征了不同膜表面所带官能团和粗糙度情况。(6)依据污染物、膜表面接触角数据和扩展杨氏方程,计算了污染物和膜表面张力参数γ+、γ-和γLW,并利用xDLVO理论进一步计算了膜-污染物和污染物-污染物之间界面自由能;在粘附和粘聚阶段,极性力作用能均占主导,与污染物和膜表面γ-/γ+比值具有较强的相关性;依据总界面作用能识别不同特征污染物在膜表面发生污染的难易程度为BSA>HA>SA;利用总界面作用能评价不同种类膜抗污染能力为1 kDa PES>30kDa PES>100 kDa PES>100 kDa PVDF。(7)对于MWCO较小的1 kDa PES膜,膜的比通量衰减可以越过最初的快速衰减段,较快的达到稳定通量运行阶段,MWCO较大时,膜比通量衰减幅度增大,膜污染更严重,导致其稳定通量越小;在对不同MWCO和不同亲疏水性膜的研究中发现,进水TOC浓度相同时,HA造成的膜比通量衰减均最低;对于亲水性PES膜,当MWCO较低时,过滤初期与膜粘附界面作用能较大的SA的污染程度大于BSA,但第二阶段污染物-污染物粘聚自由能较大的BSA引起的膜污染更严重;在膜-污染物/污染物-污染物界面自由能之和与不可逆膜污染比膜阻力之间线性的拟合中,线性相关系数均大于0.81,线性负相关关系良好,从而证明了疏水性有机物主要形成不可逆膜污染阻力,而亲水性有机污染物物理不可逆膜污染程度较轻。

Abstract

dang qian ,mo wu ran shi kun rao mo ying yong de zhu yao wen ti zhi yi ,guo nei wai zhen dui mo wu ran jin hang le da liang yan jiu 。zai yi wang yan jiu ji chu shang ,yin ru fen xing li lun ,ming que le mo wei xing mao jie gou ding liang biao zheng de fang fa ,tan ming le fen xing wei shu yu hong guan mo jie gou can shu de guan ji ,jian li le mo fen xing jie gou shen tou mo xing ;jie ge xDLVOli lun ,fen bie ji suan le mo -wu ran wu ji wu ran wu -wu ran wu zhi jian jie mian zuo yong neng ,bing yu mo wu ran qu shi he bu ke ni mo wu ran zu li jin hang dui zhao ,tan tao le bu tong jie gou he xing zhi de mo wu ran te zheng wu zhi dui bu tong wu hua te xing mo de wu ran gui lv ,jie shi le mo -wu ran ceng de jie mian wu ran ji zhi 。yan jiu jie guo ru xia suo shi :(1)li yong chang fa she sao miao dian jing FESEMhe zhuan ye tu xiang chu li ruan jian ImageJdui liu chong bu tong qie ge fen zi liang PESmo he qie ge fen zi liang 100 kDa PVDFmo wei xing mao jie gou jin hang biao zheng ,tu xiang chu li he shu ju fen xi ,huo de le mo biao mian kai kong lv ε、kong mi du 、mo kong yuan du 、zui da kong jing λmax、zui xiao kong jing λmindeng mo jie gou can shu ;tong shi ce ding le mo kong xi lv 、ping jun kong jing 、mo fen li ceng hou du 、chun shui jie chu jiao deng can shu ;bing jiang shang shu biao zheng can shu yu qie ge fen zi liang zhi jian jin hang le ding xing dui bi fen xi 。(2)cai yong xiao dao fa 、he wei fa he xiang guan han shu fa ce ding le qie ge fen zi liang wei 50 kDa PESmo zai bu tong fang da bei shu (20000X、50000X、100000X)xia de mo mian ji fen wei Df。qian liang chong fang fa ji suan bu tong fang da bei shu xia de Df,cha zhi jiao da ,er xiang guan han shu fa ji suan de Df,wen ding xing hao ,ji cha zhi xiao yu 0.2%,suo yi you shua chu xiang guan han shu fa zuo wei mo mian ji fen wei ce ding fang fa 。li yong P-dguan ji he fen xing biao du guan ji ,fen bie ji suan chu mo kong xing fen wei DShe ping jun yu qu du fen wei DT。(3)ding xing fen xi le mo kong xing fen wei Ds、mo mian ji fen wei Dfhe ping jun yu qu du fen wei DTyu mo kong xing 、mo kong xi jie gou he liu xian wan qu cheng du de guan lian ;yi xian xing ni ge he duo xiang shi ni ge liang chong fang shi miao shu le Df,DThe mo biao mian kai kong lv εde guan ji ,Dfyu εcheng xian liang hao de zheng xiang guan guan ji ,DTyu εcheng jiao hao de fu xiang guan guan ji ,Dfyue da ,kong xi zai mo zhong fa yo de yue chong fen ,xiang ying de liu xian yue shu huan ,DTyue xiao ,Df、DTzhi jian cheng xian liang hao de xian xing fu xiang guan guan ji 。(4)yi Hagen-Poiseuillegong shi wei zhu ,yin ru mo kong xing fen wei DS,yu qu du fen wei DT,tong shi kao lv mo cai liao qin shu shui xing he mo kong xi fen xing te zheng ,jie ge fen xing li lun he fang fa ,jian li le ji yu xiu zheng xing Hagen-Poiseuillefang cheng de mo fen xing jie gou shen mo xing ,mo xing biao da shi zhong mei you jing yan chang shu ,mei yi ge can shu dou you ming que de wu li yi yi 。(5)cai yong san wei ying guang guang pu 、FTIRguang pu he ji guang na mi li du yi biao zheng le san chong te zheng wu ran wu BSA、HA、SAde ying guang te xing 、guan neng tuan xin xi he li jing fen bu ;cai yong FTIRguang pu he yuan zi li xian wei jing biao zheng le bu tong mo biao mian suo dai guan neng tuan he cu cao du qing kuang 。(6)yi ju wu ran wu 、mo biao mian jie chu jiao shu ju he kuo zhan yang shi fang cheng ,ji suan le wu ran wu he mo biao mian zhang li can shu γ+、γ-he γLW,bing li yong xDLVOli lun jin yi bu ji suan le mo -wu ran wu he wu ran wu -wu ran wu zhi jian jie mian zi you neng ;zai nian fu he nian ju jie duan ,ji xing li zuo yong neng jun zhan zhu dao ,yu wu ran wu he mo biao mian γ-/γ+bi zhi ju you jiao jiang de xiang guan xing ;yi ju zong jie mian zuo yong neng shi bie bu tong te zheng wu ran wu zai mo biao mian fa sheng wu ran de nan yi cheng du wei BSA>HA>SA;li yong zong jie mian zuo yong neng ping jia bu tong chong lei mo kang wu ran neng li wei 1 kDa PES>30kDa PES>100 kDa PES>100 kDa PVDF。(7)dui yu MWCOjiao xiao de 1 kDa PESmo ,mo de bi tong liang cui jian ke yi yue guo zui chu de kuai su cui jian duan ,jiao kuai de da dao wen ding tong liang yun hang jie duan ,MWCOjiao da shi ,mo bi tong liang cui jian fu du zeng da ,mo wu ran geng yan chong ,dao zhi ji wen ding tong liang yue xiao ;zai dui bu tong MWCOhe bu tong qin shu shui xing mo de yan jiu zhong fa xian ,jin shui TOCnong du xiang tong shi ,HAzao cheng de mo bi tong liang cui jian jun zui di ;dui yu qin shui xing PESmo ,dang MWCOjiao di shi ,guo lv chu ji yu mo nian fu jie mian zuo yong neng jiao da de SAde wu ran cheng du da yu BSA,dan di er jie duan wu ran wu -wu ran wu nian ju zi you neng jiao da de BSAyin qi de mo wu ran geng yan chong ;zai mo -wu ran wu /wu ran wu -wu ran wu jie mian zi you neng zhi he yu bu ke ni mo wu ran bi mo zu li zhi jian xian xing de ni ge zhong ,xian xing xiang guan ji shu jun da yu 0.81,xian xing fu xiang guan guan ji liang hao ,cong er zheng ming le shu shui xing you ji wu zhu yao xing cheng bu ke ni mo wu ran zu li ,er qin shui xing you ji wu ran wu wu li bu ke ni mo wu ran cheng du jiao qing 。

论文参考文献

  • [1].生物膜非线性动力学特性及分形结构[D]. 陈黎明.天津大学2005
  • [2].尾矿库植物根系发育的分形特征及对植物铀分布的影响[D]. 左华丽.南华大学2015
  • [3].噪声扰动的广义M-J集分形结构的研究[D]. 王震.大连理工大学2006
  • [4].钙基脱硫剂硫化反应产物分形结构的特性研究[D]. 冯垚飞.华北电力大学2012
  • 论文详细介绍

    论文作者分别是来自济南大学的张志强,发表于刊物济南大学2019-10-31论文,是一篇关于分形结构论文,渗透模型论文,界面效应论文,理论论文,济南大学2019-10-31论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自济南大学2019-10-31论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    张志强:膜—污染层分形界面效应研究与膜分形结构渗透模型的建立论文
    下载Doc文档

    猜你喜欢