流域水电开发环境影响评价方法 ——以跨界河流黑龙江为例

流域水电开发环境影响评价方法 ——以跨界河流黑龙江为例

论文摘要

水电开发项目的环境影响问题日益受到广泛关注,对于跨界的国际河流更是如此。本研究借助数学模型、制图和地理信息系统等手段,探索流域水电开发环境影响的评价方法,并以国际河流阿穆尔/黑龙江流域作为案例开展了应用分析。阿穆尔/黑龙江流域是典型的需要共享环境责任的跨界地区。然而目前在该流域普遍存在共享资源的不协调利用现象,具体包括:过度捕捞,不合理的分流引水,单边建设洪水控制设施,水电站的开发建设(HPP),未经处理的径流排放,滥砍滥伐等,导致阿穆尔/黑龙江流域生态系统生产力和恢复力不断被削弱。根据中俄跨界地区合作计划,阿穆尔河/黑龙江主河道规划有12座水坝;此外在三国共享流域内至少有80多座大型水坝已完成建设。由于对风险的考虑不足,这种大规模建设对于环境和社会经济的影响非常复杂,且很难预测。为此,本研究提出一种相对简单的、流域尺度的快速评价方法。该方法通过比较各种水电项目的全流域环境影响,在阿穆尔/黑龙江流域所有拟建水电站中,筛选生产力最高,但对环境危害最小的水电发展方案。论文作者通过大量文献调研,首先探讨了大型水坝的主要功能及其环境影响,总结了水电开发和水坝建设的成本效益分析方法和主要环境影响评价方法,系统梳理了目前中国水电发展的趋势,并分析了国内和跨区水电项目环境影响评价的法律框架。然后,作者回顾了中俄水电合作的历程,总结了两国在阿穆尔/黑龙江流域水电和水资源管理的合作趋势,并简要介绍了该流域拟建大型水电项目对环境和社会的潜在影响。在此基础上,作者提出了大型水坝环评的关键评价因素和指标,构建了流域尺度水电建设环境影响评价方法,该方法可以估算下游水文状况和洪泛区生态系统的改变、坝上水生生态系统的改变及流域的碎片化与阻断。最后,作者以阿穆尔/黑龙江及其子流域单元为例进行评价方法的应用,给出了评价的结果和结论,并就黑龙江流域水电发展的两国合作之可能途径,提出了建议。通过建议的评价方法,作者进行了阿穆尔/黑龙江流域潜在水坝建设位置的全流域评价,并评估了不同水电开发方案对环境的影响和效率。基于评估结果,作者提出了一种可能的水坝开发项目分类:满意(22),不满意(24),有害(5),灾难性的(15)。这种分类综合考虑了水坝的发电能力及其环境影响。在前述研究的基础上,作者对阿穆尔/黑龙江跨界流域水电开发做了情景预测,建议在该地区采用更严格的环保标准,提高现有设施的能源效率,以此作为推动该地区可持续发展的强制性前提要求,满足要求后方可考虑新增大坝建设的可行性。只有评估结果为“满意”类中(少害,高效)的水坝项目才可以作为备选方案实施。必须避免其他类别评估结果的水坝建设。

论文目录

  • 中文摘要
  • ABSTRACT
  • INTRODUCTION
  • CHAPTER 1. IMPACTS, COSTS AND BENEFITS OF HYDROPOWERDEVELOPMENT. CURRENT APPROACHES TO IMPACT ASSESSMENT
  • 1.1. Socio-economic costs and benefits of dams
  • 1.2. Environmental impacts of large dams
  • 1.3. Current approaches to the strategic impact assessment of the hydropowerdevelopment in a river basin
  • CHAPTER 2. HYDROPOWER DEVELOPMENT IN CHINA AND LEGALFRAMEWORK FOR THE EIA ON HYDRO PROJECTS
  • 2.1. Recent trends of hydropower development in China
  • 2.2. China’s legal framework on Environmental Impact Assessment fordomestic and transboundary hydropower projects
  • CHAPTER 3. CHARACTERISTICS OF AMUR/HEILONG RIVER BASIN AND IMPACTS OF HYDROPOWER DEVELOPMENT
  • 3.1. Geographical and hydrological characteristics of the Amur / Heilong Riverbasin
  • 3.2. Global value of the Heilongjiang freshwater ecosystems and humanimpacts in the basin
  • 3.3. Reasons and history of large hydro development in Heilongjiang basin. 32
  • 3.3.1. A brief analysis of the HPPs existing in the Amur / Heilong Riverbasin
  • 3.3.2. HPPs proposed in Heilongjiang basin
  • CHAPTER 4. METHODOLOGY OF THE BASIN-WIDE ENVIRONMENTAL IMPACTEXPRESS ASSESSMENT
  • 4.1. Introduction to the express environmental assessment methodology
  • 4.2. Selection of most significant indicators for the model: its basiccharacteristics and significance
  • 4.2.1. Downstream changes in the hydrological regime and floodplainecosystems
  • 4.2.2. Transformation of aquatic ecosystems above the dam
  • 4.2.3. Isolation of river sections
  • 4.2.4. River basin fragmentation
  • 4.2.5. Change in the natural regime of sediment runoff
  • 4.2.6. Natural value of the sub-basin
  • 4.3. Integral and environmental efficiency indicators used in the model
  • CHAPTER 5. EXAMPLE OF A COMPREHENSIVE BASIN-WIDE HYDROPOWERIMPACT ASSESSMENT
  • 5.1. Impact assessment for a single HPP
  • 5.1.1. Downstream changes in the hydrological regime and floodplainecosystems
  • 5.1.2. Transformation of aquatic ecosystems above the dam
  • 5.1.3. River basin blockage by the dam
  • 5.1.4. River basin fragmentation
  • 5.1.5. Modification of natural regime of sediment runoff
  • 5.1.6. Integral indicators of impacts of a single HPP
  • 5.1.7. Environmental efficiency indicators for a single HPP
  • 5.2. Comparison of the impacts of single HPPs
  • 5.3. Scenarios of hydropower development in the river basin
  • 5.3.1. Downstream changes in the hydrological regime and floodplainecosystems
  • 5.3.2. Transformation of aquatic ecosystems above the dam
  • 5.3.3. Isolation of the river basin
  • 5.3.4. Basin fragmentation
  • 5.3.5. Change in the natural regime of sediment runoff
  • 5.3.6. Integral and specific (environmental efficiency) indicators of thecascade's impacts
  • 5.4. Comparison of the scenarios of hydropower development inthe river basin
  • CHAPTER 6. RESULTS OF THE ASSESSMENT OF ENVIRONMENTAL IMPACTSOF HYDROPOWER DEVELOPMENT IN THE AMUR / HEILONG RIVER BASIN
  • 6.1. Results of individual assessment of the HPPs on the threemain indicators
  • 6.2. Possible ways of Hydropower Development in Heilong River basin
  • CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS
  • 7.1. Conclusions
  • 7.2. Recommendations
  • ACKNOWLEDGEMENT
  • LIST OF TABLES
  • LIST OF FIGURES AND PICTURES
  • APPENDIX 1. LIST OF SOCIAL AND ENVIRONMENTAL IMPACTS POTENTIALLYCAUSED BY CONSTRUCTION OF LARGE HYDROPOWER PROJECTS
  • APPENDIX 2.OUTLINE OF THE ASSESSMENT METHODOLOGY
  • APPENDIX 3. RANKING OF INTEGRAL IMPACTS OF POTENTIAL DAMSCENARIOS – 3 FACTORS (CHINESE SIDE OF THE HEILONG BASIN)
  • APPENDIX 4. RANKING OF INTEGRAL IMPACTS OF POTENTIAL DAM SCENARIOS – 3 FACTORS (RUSSIAN SIDE OF THE HEILONG BASIN + MAINCHANNEL)
  • APPENDIX 5. RANKING OF INTEGRAL IMPACTS OF POTENTIAL DAM SCENARIOS – 5 FACTORS (RUSSIAN SIDE OF THE HEILONG BASIN + MAINCHANNEL)
  • APPENDIX 6. CORRELATION OF POTENTIAL IMPACTS AND EFFICIENCY(RUSSIAN SIDE OF THE HEILONG BASIN + MAIN CHANNEL)
  • APPENDIX 7. CORRELATION OF POTENTIAL IMPACTS AND EFFICIENCY(CHINESE SIDE OF THE HEILONG BASIN)
  • APENDIX 8. HPPS IN THE AMUR / HEILONG RIVER BASIN AND ITS INTEGRALIMPACT ON THE ECOSYSTEM OF THE RIVER ON 3 MAIN FACTORS
  • BIBLIOGRAPHY
  • Resume
  • 个人简历
  • 相关论文文献

    • [1].River bank protection from ship-induced waves and river flow[J]. Water Science and Engineering 2019(02)
    • [2].My School[J]. 校园英语 2020(17)
    • [3].蚂蚁和鸽子[J]. 意林(少年版) 2017(08)
    • [4].Half Dead[J]. 阅读 2009(Z2)
    • [5].Experimental study of impact of a certain polluted river on groundwater along river bank in Southeast China[J]. Journal of Groundwater Science and Engineering 2014(03)
    • [6].Stability assessment and risk analysis of aboveground river in lower Yellow River[J]. Journal of Groundwater Science and Engineering 2014(04)
    • [7].Study of Ecological Water Demand of Rivers in Shenyang City, Northeastern China[J]. Journal of Groundwater Science and Engineering 2014(01)
    • [8].Organic Contamination of Soil and Goundwater in the Piedimont Plain of the Taihang Mountains[J]. Journal of Groundwater Science and Engineering 2013(01)
    • [9].A Review of Comprehensive River Regulation Specification[J]. Journal of Landscape Research 2020(04)
    • [10].Wide river or narrow river:Future river training strategy for Lower Yellow River under global change[J]. International Journal of Sediment Research 2018(03)
    • [11].Nitrogen forms and pollution load of Dianchi Lake inflow river runoff in rainy season[J]. Ecological Economy 2016(04)
    • [12].Development and preliminary application of a method to assess river ecological status in the Hai River Basin,north China[J]. Journal of Environmental Sciences 2016(01)
    • [13].Welcome to My Hometown[J]. 中学生英语 2020(01)
    • [14].Integrated simulation and assessment of water quantity and quality for a river under changing environmental conditions[J]. Chinese Science Bulletin 2013(27)
    • [15].Research on the river function regionalization[J]. Science in China(Series E:Technological Sciences) 2009(10)
    • [16].Theory and application of nonlinear river dynamics[J]. International Journal of Sediment Research 2014(03)
    • [17].Dimension and frequency of bar formation in a braided river[J]. International Journal of Sediment Research 2013(03)
    • [18].A method for rapid transmission of multi-scale vector river data via the Internet[J]. Geodesy and Geodynamics 2012(02)
    • [19].Impact of hydroelectric projects on river environment: Analysis of water quality changes in Ningxia Reach of Yellow River[J]. Water Science and Engineering 2008(02)
    • [20].Sediment control function of river notches[J]. Journal of Mountain Science 2018(03)
    • [21].Geochemistry of Harappan potteries from Kalibangan and sediments in the Ghaggar River: Clues for a dying river[J]. Geoscience Frontiers 2018(04)
    • [22].Hydro-hypsometric analysis of tropical river basins,Southwest Coast of India using geospatial technology[J]. Journal of Mountain Science 2016(05)
    • [23].Climatic variations of general atmospheric circulation,precipitation and river flow of the territory of Kazakhstan[J]. Sciences in Cold and Arid Regions 2013(01)
    • [24].Numerical simulation of mechanical breakup of river ice-cover[J]. Journal of Hydrodynamics 2013(03)
    • [25].The quantization of river network morphology based on the Tokunaga network[J]. Science in China(Series D:Earth Sciences) 2009(11)
    • [26].Assessment of dam impacts on river flow regimes and water quality:a case study of the Huai River Basin in P.R.China[J]. Journal of Chongqing University(English Edition) 2008(04)
    • [27].Areas of the global major river plumes[J]. Acta Oceanologica Sinica 2013(01)
    • [28].河流健康及其指标(英文)[J]. Journal of Geographical Sciences 2009(01)
    • [29].Jiaozhou Bay and Surrounding Waters not Polluted by Cr[J]. Meteorological and Environmental Research 2017(04)
    • [30].Public Signs[J]. 阅读 2016(Z7)

    标签:;  ;  ;  ;  ;  

    流域水电开发环境影响评价方法 ——以跨界河流黑龙江为例
    下载Doc文档

    猜你喜欢