论文摘要
L-函数是一种生成函数,它的来源可以是算术几何,比如定义在数域上的椭圆曲线,或是自守形式。根据Langlands纲领,任何一个一般的L-函数都可以分解为GLm/Q上的自守表示的L-函数的乘积。因此,GLm/Q上的这些自守L-函数就是构建Langlands纲领大厦的砖瓦,因而具有非常深刻的理论意义。 本文中,我们将研究GL2/Q上的全纯尖形式对应的自守L-函数。 我们首先考虑GL1的情况。(?)(s)为Riemann-zeta函数,这里s=σ+it。Hardy和Littlewood研究了二次积分均值 (?)(T)=(1/T)integral from n=1 to T(|(?)(1/2+it)|2dt), 并且证明了当T→∞时, (?)(T)~logT。(0.1) 这就是说|(?)(1/2+it)|2的均值为logt。记γ≤γ+为(?)(s)函数的连续零点的纵坐标,在Riemann猜想下,Conrey and Ghosh定义了离散均值 (?)(T)=1/(N(T)) sum from 0<γ≤T to max γ<t≤γ+(|(?)(1/2+it)|2), 并且证明了 (?)(T)~(e2-5)/2 logT。(0.2) 这里N(T)是非显然零点ρ=1/2+iγ的个数,0<γ≤T。这说明|(?)(1/2+it)|2在临界情况下的均值为(e2-5)/2logt。注意到(e2-5)/2=1.1945…,大于1。所以,我们可以把公式(0.1)和(0.2)记做 (?)(T)~(e2-5)/2(?)(T)。(0.3) 本文中,我们研究SL2(Z)上的全纯尖形式f对应的自守L-函数L(f,s)。Shandong University Master Dissertation定义J(f,T):二一 T厂卜(,,蚤+、亡)…’“(0 .4)在广义Riemann假设下,即侧f,s)的所有非显然零点都位于。二告上.记守三7+为L(f,,)的连续零点的纵坐标,幻(了,刀二 1一l/.1.、}‘两了万。落·级笋}乙气‘,百十’‘)}’‘。·5,这里N(f,刀是L(f,s)的非显然零点p二合+行的个数,0<7三T.我们有、(,,:)一丢,。g蒜+O(‘。gT,;(0 .6)和经典的Riemann zeta函数的零点个数N(:)一乒:。g乒+o(logT) 乙7T‘7TC做比较. 我们有下面的结果 定理0.1.设侧了,s)为SLZ(蜀上的全纯尖形式f对应的自守L一函数,在广义Riemann假设下,习(f,T)J(f,T)+乃(f,T),(0 .7)这里乃(f,T)=州劲弄109弄二(忿卜艺兴。。8(‘·而一普) 1<介<止‘(0 .8):(n)为依赖于f的某个常数.Shandong University Master Dissertation 这里到f,s)是2阶L一函数,而以s)阶为1.由(0.s),易知州f,s)比心(s)研究起来更困难.在引理7.1中我们将证明H(T)《Tl+‘.遗憾地是,现在的方法不能得到(0.5)中H(刀的渐进公式.因此,我们在互7中将给出一些探索性的讨论,给出T《H(月《TlogZ工以及如果H(T)阶为T10gZT,则有渐进公式H(刀clTlogZT.我们提出了猜想0.2.存在常数c全0习(f,T)、(1+c)J(f,T).常数。至多依赖于f的权k.关键词:全纯尖形式,自守L-函数,广义Riemann猜想,广义Ramanujan猜想,广义Lindel6f猜想
论文目录
相关论文文献
- [1].Mapping of Least ρ-Dirichlet Energy between Doubly Connected Riemann Surfaces[J]. Acta Mathematica Sinica 2020(06)
- [2].The Riemann Problem for Chaplygin Gas Flow in a Duct with Discontinuous Cross-Section[J]. Chinese Annals of Mathematics,Series B 2020(04)
- [3].Riemann函数性质及实数完备性的推导[J]. 科技经济市场 2019(07)
- [4].Riemann–Hilbert-type Boundary Value Problems on a Half Hexagon[J]. Acta Mathematica Sinica 2017(09)
- [5].Generalized Riemann problem for Euler system Dedicated to Professor LI TaTsien on the Occasion of His 80th Birthday[J]. Science China(Mathematics) 2017(04)
- [6].Inverse Scattering Transform of the Coupled Sasa–Satsuma Equation by Riemann–Hilbert Approach[J]. Communications in Theoretical Physics 2017(05)
- [7].Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chinese Physics Letters 2018(07)
- [8].Perturbed Riemann Problem for a Scalar Chapman-Jouguet Combustion Model[J]. Chinese Annals of Mathematics(Series B) 2015(02)
- [9].非齐次非对称Keyfitz-Kranzer气体方程组的Riemann问题[J]. 四川师范大学学报(自然科学版) 2020(06)
- [10].Automorphism Groups of Pseudo-real Riemann Surfaces of Low Genus[J]. Acta Mathematica Sinica 2014(01)
- [11].Riemann映射与单连通区域分类[J]. 中国科学:数学 2013(03)
- [12].Riemann boundary value problems and reflection of shock for the Chaplygin gas[J]. Science China(Mathematics) 2012(04)
- [13].THE VANISHING PRESSURE LIMIT OF SOLUTIONS TO THE SIMPLIFIED EULER EQUATIONS FOR ISENTROPIC FLUIDS[J]. Annals of Differential Equations 2012(01)
- [14].Riemann-Stieltjes可积的充要条件[J]. 北京师范大学学报(自然科学版) 2011(02)
- [15].ON MNTS FORMULA[J]. Acta Mathematica Scientia 2010(01)
- [16].Two-Dimensional Riemann Problems for the Compressible Euler System[J]. Chinese Annals of Mathematics 2009(06)
- [17].广义解析函数的广义Riemann-Hilbert问题[J]. 华东理工大学学报(自然科学版) 2009(06)
- [18].Global Structure Stability of Riemann Solution of Quasilinear Hyperbolic System of Conservation Law in Presence of Boundary:Shocks and Contact Discontinuities[J]. Communications in Theoretical Physics 2008(11)
- [19].An application of the Riemann-Roch theorem[J]. Science in China(Series A:Mathematics) 2008(04)
- [20].Multiple Positive Solutions to Singular Fractional Differential System with Riemann-Stieltjes Integral Boundary Condition[J]. Communications in Mathematical Research 2019(03)
- [21].关于向量值函数Riemann积分的若干研究[J]. 云南大学学报(自然科学版) 2019(05)
- [22].A Riemann-Hilbert Approach to the Chen-Lee-Liu Equation on the Half Line[J]. Acta Mathematicae Applicatae Sinica 2018(03)
- [23].A Riemann-Hilbert Approach to the Harry-Dym Equation on the Line[J]. Chinese Annals of Mathematics(Series B) 2016(03)
- [24].二维实系数线性双曲型方程组角域上的Riemann问题(英文)[J]. 应用数学与计算数学学报 2015(03)
- [25].Riemann-Hilbert Problem and Its Well-Posed-Ness for Elliptic Complex Equations of First Order in Multiply Connected Domains[J]. Journal of Mathematical Research with Applications 2014(04)
- [26].关于Riemann可积理论的教学探讨[J]. 高等数学研究 2012(06)
- [27].半平面中一类Riemann-Hilbert边值逆问题[J]. 贵州师范大学学报(自然科学版) 2011(01)
- [28].Riemann-Stieltjes可积函数的本质[J]. 西华大学学报(自然科学版) 2009(06)
- [29].保角变换法解无穷曲线上的Riemann边值问题[J]. 宁夏师范学院学报 2009(06)
- [30].Remarks on Thurston's Construction of Pseudo-Anosov Maps of Riemann Surfaces[J]. Chinese Annals of Mathematics 2008(01)