论文摘要
电力系统短期负荷预测是电力部门的一项重要工作,短期负荷预测的精度对电网运行的安全性、经济性以及电能质量都有重要影响。大量的研究表明,负荷时间序列具有混沌性,用常规方法预测具有一定的困难。论文主要在相空间重构基础上,用多种支持向量机模型对电力系统短期负荷时间序列进行预测,通过理论分析和仿真结果验证了它们的有效性和可行性。主要研究内容如下:相空间重构理论是短期负荷混沌时间序列预测的基础,合理的选择相空间重构参数,可以把序列中蕴藏的信息充分显露出来,从而进行准确的负荷预测。在相空间重构基础上形成了多种负荷时间序列的预测方法,常用的加权一阶局域法一步预测模型进行多步预测时计算量大且会产生累积误差。针对这一问题,引入加权一阶局域法多步预测模型。对澳大利亚新南威尔士州2006年负荷时间序列进行相空间重构,并使用加权一阶局域法多步预测模型和一步预测模型,分别对工作日和休息日的负荷进行预测仿真实验,结果验证了加权一阶局域法多步预测模型进行短期负荷预测的优越性。使用支持向量机方法进行短期负荷预测,针对支持向量机及其核函数中多个参数的选择问题,论文在研究粒子群优化算法的基础上,模拟人的随机搜索行为,提出了随机聚焦搜索优化算法。该算法原理简单,参数较少,具有比粒子群算法及其多种改进算法更简单的计算复杂度。将随机聚焦搜索优化算法用于对典型benchmark函数的优化以及电力系统的无功优化,与3种粒子群的改进算法以及差分进化算法进行比较,表明该算法具有较大的实用价值和较好的应用前景。在短期负荷预测中,针对支持向量机输入参量的选择,提出了结合相空间重构的方法。不考虑气象因素的影响,只使用历史负荷时间序列数据进行相空间重构,将重构相空间中的向量作为支持向量机的输入参量,从而将负荷时间序列重构相空间中的非线性问题,转化为核函数映射的特征空间中的线性问题进行求解。将其用于对日峰值负荷的预测,结果验证了模型的有效性。考虑到对具有混沌性的负荷时间序列信号进行处理时,信号细微特征的提取非常关键。论文尝试将小波技术与支持向量机核函数方法相结合,构建平移不变小波核支持向量机来处理这类信号。文中提出了Gaussian系列小波核、复Morlet小波核和复Gaussian小波核等3种平移不变小波核函数,并对其满足构建支持向量机平移不变核的条件进行了证明。将其用于一维函数和二维函数的逼近实验以及chen’s混沌时间序列的预测实验,结果表明,3种小波核函数都能取得较好的效果,它们都优于常用的Gaussian核和Morlet小波核,证明了本文提出的小波核函数的可行性和优越性。在相空间重构基础上,使用平移不变小波核支持向量回归机模型对工作日和休息日的负荷进行预测仿真实验,结果验证了论文提出的结合相空间重构的小波核支持向量机能够进行比较精确的短期负荷预测。
论文目录
相关论文文献
标签:短期负荷预测论文; 混沌理论论文; 相空间重构论文; 支持向量机论文; 小波核函数论文; 群集智能论文; 优化算法论文;