线性模型中参数估计的可容许性

线性模型中参数估计的可容许性

论文摘要

在现实生活和科学研究中,遇到很多基本上都是线性模型的数据,本文严格地定义了许多文献都考虑的一般Gauss-Markov模型(简称为GM模型)考察GM模型均值β或β的线性函数Sβ的估计,可容许性是这些估计的最基本的要求,因此本文研究了GM模型中一般线性模型及带不完全椭球约束的一般线性模型中的参数估计的容许性。 在线性模型和二次损失函数下,基于文献[13]的有关的结论,给出了LY在齐次线性估计类中和LY+c在非齐次线性估计类中是Sβ的可容许估计的充分必要条件,从而推广了文献[12]中的结果。又把这一结果推广到多元线性模型中的泛容许性。对于带有不完全椭球约束的线性模型在二次损失函数下的可容许性有一个独特的现象:非齐次线性估计类中的可容许性,对于不完全椭球约束的中心具有稳键性,而齐次线性估计类中的可容许性不具有此种性质。进一步,本文把这一结论推广到带有不完全椭球约束的多指标线性模型在二次损失函数下的可容许性。最后,本文讨论了在随机左删失数据模型中,Fisher信息量表示的问题,得到了比较满意的结果。

论文目录

  • 摘要
  • 主要符号表
  • 第一章 引言
  • 1.1 线性模型
  • 1.2 一般线性模型
  • 1.3 可容许性
  • 1.4 GM模型中的参数估计
  • 第二章 一般线性模型中共同均值线性估计的可容许性
  • 2.1.1 引言
  • 2.1.2 在齐次线性估计类LH中的可容许性
  • 2.1.3 在非齐次线性估计类LI中的可容许性
  • 2.2.1 引言
  • 2.2.2 齐次线性估计类中的泛容许性
  • 2.2.3 一般线性估计类中的泛容许性
  • 2.3 小结
  • 第三章 带有不完全椭圆约束的线性模型中线性估计的可容许性
  • 3.1.1 引言
  • 3.1.2 主要的结果及证明
  • 3.2.1 引言
  • 3.2.2 主要结果
  • 3.3 小结
  • 第四章 删失数据下的Fisher信息量
  • 4.1 引言
  • 4.2 主要结果
  • 4.3 小结
  • 参考文献
  • 致谢
  • 个人简历
  • 主要研究成果
  • 相关论文文献

    • [1].部分线性模型的一种新的异方差检验方法[J]. 重庆理工大学学报(自然科学) 2020(02)
    • [2].层次线性模型中多重共线性的诊断[J]. 佳木斯大学学报(自然科学版) 2019(05)
    • [3].部分线性模型的adaptive group lasso变量选择[J]. 西北师范大学学报(自然科学版) 2015(01)
    • [4].部分线性模型的模态正交经验似然推断[J]. 应用数学 2020(01)
    • [5].奇异线性模型下最小范数二次无偏估计关于误差分布的稳健性[J]. 华侨大学学报(自然科学版) 2012(01)
    • [6].部分线性模型的M-估计[J]. 中北大学学报(自然科学版) 2012(01)
    • [7].基于模糊线性模型的舵减横摇广义预测控制[J]. 武汉理工大学学报(交通科学与工程版) 2009(01)
    • [8].局部线性模型在小波神经网络中的应用(英文)[J]. 内蒙古师范大学学报(自然科学汉文版) 2008(01)
    • [9].纵向数据下部分线性模型的二次光滑估计[J]. 延边大学学报(自然科学版) 2019(03)
    • [10].具有限制条件的部分线性模型的经验似然推断(英文)[J]. 湖南师范大学自然科学学报 2017(04)
    • [11].等价限制线性模型中极大似然估计的稳健性[J]. 周口师范学院学报 2014(05)
    • [12].阶层线性模型在大众传播学中的应用探讨[J]. 现代商贸工业 2012(11)
    • [13].正则矩阵补偿的部分线性模型解法及其性质[J]. 科技传播 2012(21)
    • [14].高维部分线性模型的变量选择和估计(英文)[J]. 应用概率统计 2011(02)
    • [15].奇异线性模型参数估计的相对效率[J]. 大学数学 2010(04)
    • [16].部分线性模型基于稳健估计的拟合优度检验[J]. 中国新技术新产品 2009(17)
    • [17].纵向数据广义部分线性模型的二次推断推断函数估计(英文)[J]. 应用概率统计 2017(04)
    • [18].基于分层线性模型的出口与经济增长关系研究[J]. 数学的实践与认识 2013(23)
    • [19].部分线性模型在试验数据处理中的应用研究[J]. 科技致富向导 2011(30)
    • [20].分层线性模型对中药新药多中心临床试验重复测量数据的分析[J]. 中国中医药信息杂志 2014(03)
    • [21].函数型数据部分线性模型的估计的r阶收敛性[J]. 桂林航天工业学院学报 2014(02)
    • [22].半参数部分线性模型在小麦抗倒伏性分析中的应用[J]. 重庆理工大学学报(自然科学) 2013(03)
    • [23].税式支出的扩展线性模型分析法研究——以江苏为例[J]. 会计师 2013(16)
    • [24].含测量误差的部分线性模型的发散参数估计(英文)[J]. 应用概率统计 2012(03)
    • [25].带随机约束的奇异线性模型的加权混合两参数估计[J]. 兰州文理学院学报(自然科学版) 2018(06)
    • [26].相依误差下部分函数型线性模型的估计[J]. 应用数学学报 2017(01)
    • [27].基于分层线性模型的投资组合分析[J]. 当代经济科学 2015(02)
    • [28].基于内蕴线性模型对金融发展与经济增长关系的研究[J]. 内蒙古农业科技 2015(02)
    • [29].基于线性模型平均估计的置信区间[J]. 系统科学与数学 2020(10)
    • [30].部分线性模型非参数分量的同时置信带[J]. 数理统计与管理 2013(05)

    标签:;  ;  ;  ;  ;  

    线性模型中参数估计的可容许性
    下载Doc文档

    猜你喜欢