论文摘要
镁合金是一种很有吸引力的轻金属结构材料,其在交通工具、电子通信、航空航天等领域有着广阔的运用前景。镁是密排六方结构,只有有限的滑移系,室温下塑性成型能力差,同时也限制了镁合金的比强度的大幅度提高。目前细化晶粒成为优先考虑用来提高镁合金强度和塑性的一种有效手段。作为一种全新的深度塑性变形方式,在已有的研究中,对变通道角挤压工艺(CCAE)的微观组织演变、晶粒细化机制和CCAE变形后细晶粒镁合金的力学性能、热稳定性能的研究都未开展,而对CCAE变形工艺的理解也不够清晰。本文旨在研究CCAE变形过程中AZ31系镁合金的微观组织演变和变形后的力学性能以及CCAE变形工艺。重点讨论了CCAE变形过程中的晶粒细化机制和模型,变形后的室温压缩性能及断裂机制,变形后微观组织的热稳定性能,以及CCAE变形过程中的挤压力和应变。以期对AZ31系镁合金的CCAE变形机理和CCAE变形工艺本身进行初步研究和探讨。为此,选取了应用比较广泛的铸态AZ31镁合金作为研究对象。采用金相显微分析(OM)和X射线衍射分析等手段,对不同挤压温度下AZ31镁合金在CCAE变形过程中的显微组织和织构的演变规律进行了分析;采用室温力学性能测试,探讨了CCAE成型后AZ31镁合金的室温力学性能和室温下的断裂方式及断裂机理;采用透射电子显微技术(TEM),探讨了CCAE变形过程中AZ31镁合金的晶粒细化机制和模型;对经CCAE变形后的AZ31镁合金进行了退火处理,探讨了经CCAE变形后AZ31镁合金显微组织的热稳定性能;采用上限法对CCAE变形工艺进行了数值分析,对CCAE变形过程中挤压力和应变的计算进行了初步探讨。取得如下结果:AZ31镁合金经CCAE变形后,镁合金晶粒明显细化。变形后合金室温延伸率随晶粒细化而提高,屈服强度和硬度都随晶粒细化而提高,与Hall-Petch关系的趋势符合。在250450℃温度范围内进行CCAE变形,AZ31镁合金的晶粒随变形温度的降低而减小。AZ31镁合金经CCAE热变形后,合金的室温强韧性得到综合改善。CCAE变形过程中AZ31镁合金的晶粒细化机制可以归结为在两不同内径的通道的交接处的剪切区的剪切作用引起的晶粒破碎和整个CCAE变形过程中发生的连续动态回复和再结晶(CDRR)。对于连续动态回复和再结晶,变形初期在粗晶粒内产生许多位错,位错会发生交互作用,重新排列形成位错界面以及亚晶界,而形成的位错界面以及亚晶界会进一步演化为小角度晶界和大角度晶界,镁合金得以细化。对挤压温度为250℃的挤压成型样进行晶体结构稳定性的实验,退火温度范围为200500℃,保温时间为30min,随着退火温度的升高,晶粒不断长大,在200275℃时,晶粒随温度上升呈平缓线性长大,从275400℃晶粒长大趋于平缓,400℃以后,晶粒迅速长大。在这三个温度区间,其晶粒长大激活能分别为:73.6,16.7,105.1kJ/mol。在高温范围内的激活能介于纯镁的晶格自扩散能(QL=135kJ/mol)和晶界扩散能(Qgb=92kJ/mol)之间。在低温范围内,其晶粒长大激活能小于纯镁的晶界扩散能,并且与之比较接近。但是在中温范围内,晶粒长大激活能远小于QL和Qgb,其大约相当于0.18Qgb。在经过CCAE热变形后细化的晶粒在随后的退火过程中,晶粒长大的驱动力来源可能是多方面的,但最主要的而且在所有晶粒长大过程中都存在的驱动力来源是晶界的界面能。对CCAE变形过程中的挤压力和应变进行了上限法分析,发现理论计算和实验结果基本吻合。
论文目录
相关论文文献
- [1].基于越野车采用镁合金车轮的工程应用研究[J]. 小型内燃机与车辆技术 2019(06)
- [2].高强镁合金及其制备工艺的研究进展[J]. 热加工工艺 2019(24)
- [3].镁合金车轮装配工艺分析[J]. 汽车实用技术 2020(01)
- [4].华北轻合金在锻造镁合金开发上取得突破[J]. 铸造工程 2020(02)
- [5].新能源汽车含钒钛镁合金的挤压温度优化[J]. 热加工工艺 2020(11)
- [6].镁合金座椅骨架设计及性能研究[J]. 汽车工艺与材料 2020(06)
- [7].全球镁和镁合金最新研发情况梗概[J]. 铸造工程 2020(04)
- [8].一种镁合金座椅骨架的强度性能研究[J]. 汽车工艺与材料 2020(09)
- [9].镁合金的焊接及其在汽车上的应用[J]. 汽车文摘 2019(06)
- [10].组织细化对AZ91D镁合金腐蚀性能的影响[J]. 清华大学学报(自然科学版) 2019(09)
- [11].先进镁合金助力装备轻量化发展[J]. 科技导报 2019(21)
- [12].激光增材制造镁合金的研究现状及展望[J]. 激光与光电子学进展 2019(19)
- [13].高强镁合金的制备研究进展[J]. 轻合金加工技术 2019(11)
- [14].AZ80-0.2Sr-0.15In镁合金锻造组织和性能的研究[J]. 热加工工艺 2017(01)
- [15].镁合金腐蚀机理及高性能镁合金设计战略研讨会举办[J]. 表面工程与再制造 2016(06)
- [16].中北大学攻克镁合金构件成形技术[J]. 特种铸造及有色合金 2017(04)
- [17].一种快速测定镓镁合金中镓含量的方法[J]. 现代冶金 2017(02)
- [18].汽车轻量化新型镁合金的搅拌摩擦加工改性研究[J]. 热加工工艺 2017(06)
- [19].工艺参数对上引连铸铜镁合金杆微观组织的影响[J]. 有色金属工程 2017(05)
- [20].镁及镁合金浇注采用保护气体的研究[J]. 化工管理 2016(14)
- [21].日本研发出不燃镁合金部件[J]. 铝加工 2016(04)
- [22].一种典型薄壁铸镁合金框架的加工[J]. 航空精密制造技术 2015(04)
- [23].浅谈镁合金医用材料的腐蚀行为与表面改性[J]. 山东化工 2015(16)
- [24].钕与旋锻对AZ71镁合金力学性能的影响(英文)[J]. Transactions of Nonferrous Metals Society of China 2015(10)
- [25].镁合金的应用及前景[J]. 智富时代 2017(11)
- [26].深闺待嫁镁合金(下)[J]. 科学中国人 2013(06)
- [27].血管支架用镁合金微细管的制备与性能[J]. 稀有金属材料与工程 2020(10)
- [28].高强镁合金的制备及研究进展综述[J]. 四川冶金 2020(05)
- [29].磁场对船用镁合金在模拟海水中的研究[J]. 内燃机与配件 2020(02)
- [30].镁合金的挤压加工技术与焊接技术[J]. 国外机车车辆工艺 2020(02)