王晓春:AGSBR处理养猪场废水的效能及同步去除抗生素的机制研究论文

王晓春:AGSBR处理养猪场废水的效能及同步去除抗生素的机制研究论文

本文主要研究内容

作者王晓春(2019)在《AGSBR处理养猪场废水的效能及同步去除抗生素的机制研究》一文中研究指出:目前,我国经济增长速度快,生活水平日益提高,人们对畜禽产品的需求量也逐渐增加,大规模的畜禽养殖产生大量的畜禽养殖废水。该废水含化学需氧量(COD)、氨氮(NH4+-N)、总磷(TP)浓度高且存在抗生素类污染物,排入受纳水体将对生态环境和人类健康带来潜在危害。现有处理工艺对常规有机物有较好的去除效果,而氨氮、磷以及抗生素的去除尚存在较大难度。针对该类废水中抗生素类有机物去除难等问题,开发高效、经济的水处理技术势在必行。本研究提出好氧颗粒污泥(AGS)结合序批式反应器(SBR)形成AGSBR处理该类废水。考察AGSBR的除污效果以及AGS性能,重点对AGS去除四环素(TC)和土霉素(OTC)的机制展开深入研究。研究比较膜生物反应器(MBR)和SBR两种反应器同时培养AGS效果,结果表明SBR中获得AGS的时间更短、形态更佳、沉降性能更优。因此,确定在SBR中分别接种冷冻储存的颗粒污泥和普通活性污泥以驯化培养成熟的AGS。运行至22天,以冷冻颗粒污泥培养形成的AGS结构致密,边缘光滑,其混合液悬浮固体浓度(MLSS)值超过8 g/L,污泥体积指数(SVI)值达到37mL/g。此时COD、NH4+-N和TP的去除率均超过90%。以活性污泥接种的反应器运行至54天,得到形态良好的AGS,与前者相比,其污泥性能和除污效能均较低。结果表明以冷冻储存颗粒污泥作为接种污泥可快速启动AGSBR。进一步优化AGSBR参数,以达到高效处理畜禽养殖废水的目的。当剪切力为1.86 cm/s,AGSBR对COD、NH4+-N和TP的去除率分别为94.0%、79.0%和90.0%。在此条件下可获得形貌和性能均最佳的AGS,其MLSS值和SVI值分别达到6.0 g/L和35.0 mL/g。在不同进水C/N比条件下优化AGSBR,此时进水污染物浓度高于剪切力为1.86 cm/s时的浓度,当C/N比为8时形成具有较好形态和性能的AGS,其MLSS值和SVI值分别达到6.0 g/L和55.3 mL/g,COD、NH4+-N和TP的去除率分别为96.0%、88.0%和75.0%。此时氮、磷去除效果较差,因此,在不同水力停留时间(HRT)下进一步优化AGSBR。当HRT为4 h时,AGS对废水有较好的适应性,AGSBR对COD、NH4+-N和TP的去除率分别为96.0%、93.2%和89.3%,污染物出水浓度均达到《畜禽养殖业污染物排放标准》。此时得到的AGS,其沉降性能良好,MLSS值与SVI值分别为8g/L和44.5 mL/g。采用优化好的条件参数,应用AGSBR处理模拟以及实际养猪场废水,考察其处理效能和运行稳定性。结果表明,AGSBR在处理模拟废水过程中运行稳定,但含TC和OTC两个反应器中AGS的生物量有较大差异,MLSS分别为5.8 g/L和8.6 g/L,而对污染物的去除效果差异不大,COD、NH4+-N、TP去除率均达到98%、87%、98%以上,TC和OTC的去除率分别是90%和89%。结果表明,两个反应器中微生物在门和纲水平上具有抗药性的微生物分别为Proteobacteria、Bacteroidetes、Actinobacteria以及β-proteobacteria、α-Proteobacteria、Actinobacteria,而在属水平上为Comamonas、Ottowia、Fluviicola。此外,分别以甲醇、淀粉以及蔗糖为补充碳源,应用AGSBR处理养猪场实际废水,结果表明以蔗糖为补充碳源时AGSBR处理效果最好,COD、NH4+-N、TP的去除率分别为96.83%、81.14%、97.37%,出水浓度均低于《畜禽养殖业污染物排放标准》(GB/T18596-2001)的限值。TC和OTC的去除率分别是81.4%和80.7%。其中AGS形态良好,MLSS值和SVI值分别为12.65 g/L和29.23 mL/g。深入研究了AGS对两种目标物TC和OTC的吸附和降解动力学,以解析其去除机制。结果表明,AGS对TC和OTC的去除过程中,前期以吸附为主,后期以降解为主。药物驯化前的AGS对目标物的吸附作用占总去除量的最高贡献比为0.70和0.72,而驯化后的AGS对目标物的降解作用占总去除量的最高贡献比为0.88和0.72。当污泥浓度为15 g/L和10 g/L时,AGS对目标物的去除效果最佳,这与微生物之间的竞争关系有关。此外,AGS对TC和OTC有一定矿化度,其总有机碳(TOC)的去除率分别为71.8%与70.9%。检测TC和OTC的中间产物,结果发现22种TC中间产物,13种OTC中间产物,并以此推测分析了二者的降解途径。最后,利用宏基因组检测技术分析AGS降解TC和OTC过程中的功能菌、功能基因以及代谢通路的差异,揭示AGS降解目标污染物的作用机制。AGS降解TC过程,存在显著差异的微生物(P<0.05)包括Sphingopyxis、Ruminococcus、Fluviicola等,而降解OTC过程存在的显著差异微生物包括Leclercia、Haloferula、Sphingopyxis等。多糖裂解酶、氧化还原酶、糖基转移酶在OTC降解过程中起到脱氢、氧化以及糖基化的作用。结果表明AGS中微生物降解TC和OTC过程中即有相同代谢通路也有各自的特殊代谢通路,而且在相同代谢通路中发挥作用的酶也有差异。其中萘1,2-二加氧酶对TC和OTC的芳香族中间产物的降解起到关键作用,醇脱氢酶在TC降解过程中对其脂肪醇、芳香醇中间产物与相应醛酮类之间的转化起到重要作用,醛还原酶对OTC降解过程中醛类产物转化为醇类产物起到重要作用。本文研究成果将对AGSBR处理实际畜禽养殖废水具有重要的理论参考和指导意义。

Abstract

mu qian ,wo guo jing ji zeng chang su du kuai ,sheng huo shui ping ri yi di gao ,ren men dui chu qin chan pin de xu qiu liang ye zhu jian zeng jia ,da gui mo de chu qin yang shi chan sheng da liang de chu qin yang shi fei shui 。gai fei shui han hua xue xu yang liang (COD)、an dan (NH4+-N)、zong lin (TP)nong du gao ju cun zai kang sheng su lei wu ran wu ,pai ru shou na shui ti jiang dui sheng tai huan jing he ren lei jian kang dai lai qian zai wei hai 。xian you chu li gong yi dui chang gui you ji wu you jiao hao de qu chu xiao guo ,er an dan 、lin yi ji kang sheng su de qu chu shang cun zai jiao da nan du 。zhen dui gai lei fei shui zhong kang sheng su lei you ji wu qu chu nan deng wen ti ,kai fa gao xiao 、jing ji de shui chu li ji shu shi zai bi hang 。ben yan jiu di chu hao yang ke li wu ni (AGS)jie ge xu pi shi fan ying qi (SBR)xing cheng AGSBRchu li gai lei fei shui 。kao cha AGSBRde chu wu xiao guo yi ji AGSxing neng ,chong dian dui AGSqu chu si huan su (TC)he tu mei su (OTC)de ji zhi zhan kai shen ru yan jiu 。yan jiu bi jiao mo sheng wu fan ying qi (MBR)he SBRliang chong fan ying qi tong shi pei yang AGSxiao guo ,jie guo biao ming SBRzhong huo de AGSde shi jian geng duan 、xing tai geng jia 、chen jiang xing neng geng you 。yin ci ,que ding zai SBRzhong fen bie jie chong leng dong chu cun de ke li wu ni he pu tong huo xing wu ni yi xun hua pei yang cheng shou de AGS。yun hang zhi 22tian ,yi leng dong ke li wu ni pei yang xing cheng de AGSjie gou zhi mi ,bian yuan guang hua ,ji hun ge ye xuan fu gu ti nong du (MLSS)zhi chao guo 8 g/L,wu ni ti ji zhi shu (SVI)zhi da dao 37mL/g。ci shi COD、NH4+-Nhe TPde qu chu lv jun chao guo 90%。yi huo xing wu ni jie chong de fan ying qi yun hang zhi 54tian ,de dao xing tai liang hao de AGS,yu qian zhe xiang bi ,ji wu ni xing neng he chu wu xiao neng jun jiao di 。jie guo biao ming yi leng dong chu cun ke li wu ni zuo wei jie chong wu ni ke kuai su qi dong AGSBR。jin yi bu you hua AGSBRcan shu ,yi da dao gao xiao chu li chu qin yang shi fei shui de mu de 。dang jian qie li wei 1.86 cm/s,AGSBRdui COD、NH4+-Nhe TPde qu chu lv fen bie wei 94.0%、79.0%he 90.0%。zai ci tiao jian xia ke huo de xing mao he xing neng jun zui jia de AGS,ji MLSSzhi he SVIzhi fen bie da dao 6.0 g/Lhe 35.0 mL/g。zai bu tong jin shui C/Nbi tiao jian xia you hua AGSBR,ci shi jin shui wu ran wu nong du gao yu jian qie li wei 1.86 cm/sshi de nong du ,dang C/Nbi wei 8shi xing cheng ju you jiao hao xing tai he xing neng de AGS,ji MLSSzhi he SVIzhi fen bie da dao 6.0 g/Lhe 55.3 mL/g,COD、NH4+-Nhe TPde qu chu lv fen bie wei 96.0%、88.0%he 75.0%。ci shi dan 、lin qu chu xiao guo jiao cha ,yin ci ,zai bu tong shui li ting liu shi jian (HRT)xia jin yi bu you hua AGSBR。dang HRTwei 4 hshi ,AGSdui fei shui you jiao hao de kuo ying xing ,AGSBRdui COD、NH4+-Nhe TPde qu chu lv fen bie wei 96.0%、93.2%he 89.3%,wu ran wu chu shui nong du jun da dao 《chu qin yang shi ye wu ran wu pai fang biao zhun 》。ci shi de dao de AGS,ji chen jiang xing neng liang hao ,MLSSzhi yu SVIzhi fen bie wei 8g/Lhe 44.5 mL/g。cai yong you hua hao de tiao jian can shu ,ying yong AGSBRchu li mo ni yi ji shi ji yang zhu chang fei shui ,kao cha ji chu li xiao neng he yun hang wen ding xing 。jie guo biao ming ,AGSBRzai chu li mo ni fei shui guo cheng zhong yun hang wen ding ,dan han TChe OTCliang ge fan ying qi zhong AGSde sheng wu liang you jiao da cha yi ,MLSSfen bie wei 5.8 g/Lhe 8.6 g/L,er dui wu ran wu de qu chu xiao guo cha yi bu da ,COD、NH4+-N、TPqu chu lv jun da dao 98%、87%、98%yi shang ,TChe OTCde qu chu lv fen bie shi 90%he 89%。jie guo biao ming ,liang ge fan ying qi zhong wei sheng wu zai men he gang shui ping shang ju you kang yao xing de wei sheng wu fen bie wei Proteobacteria、Bacteroidetes、Actinobacteriayi ji β-proteobacteria、α-Proteobacteria、Actinobacteria,er zai shu shui ping shang wei Comamonas、Ottowia、Fluviicola。ci wai ,fen bie yi jia chun 、dian fen yi ji zhe tang wei bu chong tan yuan ,ying yong AGSBRchu li yang zhu chang shi ji fei shui ,jie guo biao ming yi zhe tang wei bu chong tan yuan shi AGSBRchu li xiao guo zui hao ,COD、NH4+-N、TPde qu chu lv fen bie wei 96.83%、81.14%、97.37%,chu shui nong du jun di yu 《chu qin yang shi ye wu ran wu pai fang biao zhun 》(GB/T18596-2001)de xian zhi 。TChe OTCde qu chu lv fen bie shi 81.4%he 80.7%。ji zhong AGSxing tai liang hao ,MLSSzhi he SVIzhi fen bie wei 12.65 g/Lhe 29.23 mL/g。shen ru yan jiu le AGSdui liang chong mu biao wu TChe OTCde xi fu he jiang jie dong li xue ,yi jie xi ji qu chu ji zhi 。jie guo biao ming ,AGSdui TChe OTCde qu chu guo cheng zhong ,qian ji yi xi fu wei zhu ,hou ji yi jiang jie wei zhu 。yao wu xun hua qian de AGSdui mu biao wu de xi fu zuo yong zhan zong qu chu liang de zui gao gong suo bi wei 0.70he 0.72,er xun hua hou de AGSdui mu biao wu de jiang jie zuo yong zhan zong qu chu liang de zui gao gong suo bi wei 0.88he 0.72。dang wu ni nong du wei 15 g/Lhe 10 g/Lshi ,AGSdui mu biao wu de qu chu xiao guo zui jia ,zhe yu wei sheng wu zhi jian de jing zheng guan ji you guan 。ci wai ,AGSdui TChe OTCyou yi ding kuang hua du ,ji zong you ji tan (TOC)de qu chu lv fen bie wei 71.8%yu 70.9%。jian ce TChe OTCde zhong jian chan wu ,jie guo fa xian 22chong TCzhong jian chan wu ,13chong OTCzhong jian chan wu ,bing yi ci tui ce fen xi le er zhe de jiang jie tu jing 。zui hou ,li yong hong ji yin zu jian ce ji shu fen xi AGSjiang jie TChe OTCguo cheng zhong de gong neng jun 、gong neng ji yin yi ji dai xie tong lu de cha yi ,jie shi AGSjiang jie mu biao wu ran wu de zuo yong ji zhi 。AGSjiang jie TCguo cheng ,cun zai xian zhe cha yi de wei sheng wu (P<0.05)bao gua Sphingopyxis、Ruminococcus、Fluviicoladeng ,er jiang jie OTCguo cheng cun zai de xian zhe cha yi wei sheng wu bao gua Leclercia、Haloferula、Sphingopyxisdeng 。duo tang lie jie mei 、yang hua hai yuan mei 、tang ji zhuai yi mei zai OTCjiang jie guo cheng zhong qi dao tuo qing 、yang hua yi ji tang ji hua de zuo yong 。jie guo biao ming AGSzhong wei sheng wu jiang jie TChe OTCguo cheng zhong ji you xiang tong dai xie tong lu ye you ge zi de te shu dai xie tong lu ,er ju zai xiang tong dai xie tong lu zhong fa hui zuo yong de mei ye you cha yi 。ji zhong nai 1,2-er jia yang mei dui TChe OTCde fang xiang zu zhong jian chan wu de jiang jie qi dao guan jian zuo yong ,chun tuo qing mei zai TCjiang jie guo cheng zhong dui ji zhi fang chun 、fang xiang chun zhong jian chan wu yu xiang ying quan tong lei zhi jian de zhuai hua qi dao chong yao zuo yong ,quan hai yuan mei dui OTCjiang jie guo cheng zhong quan lei chan wu zhuai hua wei chun lei chan wu qi dao chong yao zuo yong 。ben wen yan jiu cheng guo jiang dui AGSBRchu li shi ji chu qin yang shi fei shui ju you chong yao de li lun can kao he zhi dao yi yi 。

论文参考文献

论文详细介绍

论文作者分别是来自哈尔滨工业大学的王晓春,发表于刊物哈尔滨工业大学2019-12-07论文,是一篇关于养猪场废水论文,抗生素论文,好氧颗粒污泥论文,生物降解论文,代谢通路论文,哈尔滨工业大学2019-12-07论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自哈尔滨工业大学2019-12-07论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

标签:;  ;  ;  ;  ;  ;  

王晓春:AGSBR处理养猪场废水的效能及同步去除抗生素的机制研究论文
下载Doc文档

猜你喜欢