黄宁:Cupriavidus gilardii CR3对铜胁迫的响应机制研究论文

黄宁:Cupriavidus gilardii CR3对铜胁迫的响应机制研究论文

本文主要研究内容

作者黄宁(2019)在《Cupriavidus gilardii CR3对铜胁迫的响应机制研究》一文中研究指出:重金属污染是全球关注的环境问题,往往带来严重的生态后果和健康威胁。铜是生物生长必需元素,但超过一定浓度就会产生毒性。铜毒性导致生物体酶失活、蛋白质氧化以及DNA损伤。为了避免铜的毒性,细菌进化了铜耐受机制来维持适当游离铜的细胞质环境。研究细菌的铜抗性响应机制可以为微生物更好应用于铜污染治理与修复提供理论支持。但目前细菌的铜抗性响应机制是分散的、片段式研究,缺乏系统整体的抗性网络研究。本论文通过对两株铜抗性细菌贪铜菌Cupriavidus gilardii CR3和弗氏柠檬酸杆菌Citrobacter freundii JPG1的铜抗性能力比选,选取一株抗性能力较好的优势菌株C.gilardii CR3,利用生物化学、全基因组学、高通量转录组学及生物信息学技术,分别研究铜胁迫下该细菌的生理生化响应及累积能力;测定菌株C.gilardii CR3的全基因序列信息并注释分析相关重金属抗性的基因;测序不同铜浓度胁迫下C.gilardii CR3的转录本,寻找显著差异表达基因,深入分析其生物学功能和可能参与的代谢通路,从物理、化学和分子生物学多角度解析C.gilardii CR3对铜抗性的内在响应机制,研究结果为生物修复重金属污染提供重要理论参考。主要结果如下:C.gilardii CR3对Cu最小抑制浓度为3 mM。当铜浓度为0.5 mM时,生长量和生长速率与对照组相似无显著变化(p>0.05),暗示该浓度下其生长速率完全不受影响。当铜浓度增加到1.0 mM时,C.gilardii CR3的生长受到一定抑制。与之对比,C.freundii JPG1的最小抑制浓度为2 mM,C.freundii JPG1在0.5 mM下生长量和生长速率与对照组相比出现明显抑制。因此C.gilardii CR3比C.freundii JPG1表现出更强的铜抗性能力,后续研究选取C.gilardii CR3作为铜抗性机制研究对象。菌株C.gilardii CR3的全基因组测序分析结果显示C.gilardii CR3基因组包含2条完整没有任何内环洞的环状染色体,但不存在质粒。染色体1(CHR1)的大小为3,539,530 bp,染色体2(CHR2)为2,039,213 bp,通过全基因注释分析发现C.gilardii CR3包含cop和cus两大铜的抗性基因系统,共包含copSRABCD~1、copQLFGJIDCBARS ompC copKBA~1、copKHFIDCBARS~1和cusFAB~1四个抗铜基因簇,涉及35个抗铜基因。这些研究结果暗示了C.gilardii CR3包含丰富的抗铜基因,可能参与铜抗性响应。铜胁迫下不同转录本之间存在大量差异表达基因。0.5 mM铜浓度下,显著差异表达基因为310个;1.5 mM铜浓度下,显著差异表达基因达413个;暗示着铜浓度增加,细菌响应表达的基因更多。利用生物信息学分析显著差异表达基因的注释功能、GO功能和KEGG代谢通路富集,结果发现0.5 mM和1.5 mM铜胁迫下GO和KEGG富集结果相似,发现显著差异表达的基因主要富集在抗铜基因、硫代谢系统、Fe-S装配、ABC转运系统、蛋白质分泌系统、氨基酸代谢和谷胱甘肽代谢多个代谢途径上。细菌对铜产生较高的去除能力,在胞内和胞外都有累积。铜离子在胞内积累达92%,胞内累积占主要作用。微观结构表征和官能团位点分析揭示了细菌表面铜胁迫的响应变化。结果表明,铜直接影响细菌的细胞活性和胞外聚合物分泌,低浓度(0.1 mM)刺激胞外聚合物分泌,但高浓度(1.5 mM)抑制分泌。官能团分析发现铜胁迫后肽键-O-C=O(羧基)基团、肽聚糖中C-O-C和C-O-P和酰胺I和酰胺II的吸收峰发现明显位移,这些官能团是细胞表面蛋白质、氨基酸和多糖的特征谱带,说明这些物质参与铜的响应,可能与铜发生结合。生物膜激光共聚焦观察铜胁迫刺激了,细菌表面蛋白的分泌,这是对细胞分泌系统上调表达的有力证明。值得注意,本研究首次发现Ⅲ型蛋白质分泌系统的显著响应,它可能刺激蛋白质分泌并通过通道蛋白输出到细胞壁表面,这也可以解释铜胁迫细胞表面聚合物的增多想象。综上,研究结果揭示了铜胁迫下细菌的多种抗性响应机制:细胞壁表面分泌大量聚合物,胞外聚合物官能团与铜离子发生静电等作用结合,阻止铜离子进入细胞内;铜离子通过ABC转运蛋白进入到细胞内,细胞内的铜抗性基因响应将过量铜离子外排降低毒性;硫代谢系统高度表达,其半胱氨酸和谷胱甘肽的生物合成产生重金属螯合分子,促进CR3对铜的解毒作用;Fe-S装配系统显著响应,因为Cu(I)可以夺取Fe离子位点与硫结合形成胞内累积可以达到保护细胞的目的。

Abstract

chong jin shu wu ran shi quan qiu guan zhu de huan jing wen ti ,wang wang dai lai yan chong de sheng tai hou guo he jian kang wei xie 。tong shi sheng wu sheng chang bi xu yuan su ,dan chao guo yi ding nong du jiu hui chan sheng du xing 。tong du xing dao zhi sheng wu ti mei shi huo 、dan bai zhi yang hua yi ji DNAsun shang 。wei le bi mian tong de du xing ,xi jun jin hua le tong nai shou ji zhi lai wei chi kuo dang you li tong de xi bao zhi huan jing 。yan jiu xi jun de tong kang xing xiang ying ji zhi ke yi wei wei sheng wu geng hao ying yong yu tong wu ran zhi li yu xiu fu di gong li lun zhi chi 。dan mu qian xi jun de tong kang xing xiang ying ji zhi shi fen san de 、pian duan shi yan jiu ,que fa ji tong zheng ti de kang xing wang lao yan jiu 。ben lun wen tong guo dui liang zhu tong kang xing xi jun tan tong jun Cupriavidus gilardii CR3he fu shi ning meng suan gan jun Citrobacter freundii JPG1de tong kang xing neng li bi shua ,shua qu yi zhu kang xing neng li jiao hao de you shi jun zhu C.gilardii CR3,li yong sheng wu hua xue 、quan ji yin zu xue 、gao tong liang zhuai lu zu xue ji sheng wu xin xi xue ji shu ,fen bie yan jiu tong xie pai xia gai xi jun de sheng li sheng hua xiang ying ji lei ji neng li ;ce ding jun zhu C.gilardii CR3de quan ji yin xu lie xin xi bing zhu shi fen xi xiang guan chong jin shu kang xing de ji yin ;ce xu bu tong tong nong du xie pai xia C.gilardii CR3de zhuai lu ben ,xun zhao xian zhe cha yi biao da ji yin ,shen ru fen xi ji sheng wu xue gong neng he ke neng can yu de dai xie tong lu ,cong wu li 、hua xue he fen zi sheng wu xue duo jiao du jie xi C.gilardii CR3dui tong kang xing de nei zai xiang ying ji zhi ,yan jiu jie guo wei sheng wu xiu fu chong jin shu wu ran di gong chong yao li lun can kao 。zhu yao jie guo ru xia :C.gilardii CR3dui Cuzui xiao yi zhi nong du wei 3 mM。dang tong nong du wei 0.5 mMshi ,sheng chang liang he sheng chang su lv yu dui zhao zu xiang shi mo xian zhe bian hua (p>0.05),an shi gai nong du xia ji sheng chang su lv wan quan bu shou ying xiang 。dang tong nong du zeng jia dao 1.0 mMshi ,C.gilardii CR3de sheng chang shou dao yi ding yi zhi 。yu zhi dui bi ,C.freundii JPG1de zui xiao yi zhi nong du wei 2 mM,C.freundii JPG1zai 0.5 mMxia sheng chang liang he sheng chang su lv yu dui zhao zu xiang bi chu xian ming xian yi zhi 。yin ci C.gilardii CR3bi C.freundii JPG1biao xian chu geng jiang de tong kang xing neng li ,hou xu yan jiu shua qu C.gilardii CR3zuo wei tong kang xing ji zhi yan jiu dui xiang 。jun zhu C.gilardii CR3de quan ji yin zu ce xu fen xi jie guo xian shi C.gilardii CR3ji yin zu bao han 2tiao wan zheng mei you ren he nei huan dong de huan zhuang ran se ti ,dan bu cun zai zhi li 。ran se ti 1(CHR1)de da xiao wei 3,539,530 bp,ran se ti 2(CHR2)wei 2,039,213 bp,tong guo quan ji yin zhu shi fen xi fa xian C.gilardii CR3bao han cophe cusliang da tong de kang xing ji yin ji tong ,gong bao han copSRABCD~1、copQLFGJIDCBARS ompC copKBA~1、copKHFIDCBARS~1he cusFAB~1si ge kang tong ji yin cu ,she ji 35ge kang tong ji yin 。zhe xie yan jiu jie guo an shi le C.gilardii CR3bao han feng fu de kang tong ji yin ,ke neng can yu tong kang xing xiang ying 。tong xie pai xia bu tong zhuai lu ben zhi jian cun zai da liang cha yi biao da ji yin 。0.5 mMtong nong du xia ,xian zhe cha yi biao da ji yin wei 310ge ;1.5 mMtong nong du xia ,xian zhe cha yi biao da ji yin da 413ge ;an shi zhao tong nong du zeng jia ,xi jun xiang ying biao da de ji yin geng duo 。li yong sheng wu xin xi xue fen xi xian zhe cha yi biao da ji yin de zhu shi gong neng 、GOgong neng he KEGGdai xie tong lu fu ji ,jie guo fa xian 0.5 mMhe 1.5 mMtong xie pai xia GOhe KEGGfu ji jie guo xiang shi ,fa xian xian zhe cha yi biao da de ji yin zhu yao fu ji zai kang tong ji yin 、liu dai xie ji tong 、Fe-Szhuang pei 、ABCzhuai yun ji tong 、dan bai zhi fen bi ji tong 、an ji suan dai xie he gu guang gan tai dai xie duo ge dai xie tu jing shang 。xi jun dui tong chan sheng jiao gao de qu chu neng li ,zai bao nei he bao wai dou you lei ji 。tong li zi zai bao nei ji lei da 92%,bao nei lei ji zhan zhu yao zuo yong 。wei guan jie gou biao zheng he guan neng tuan wei dian fen xi jie shi le xi jun biao mian tong xie pai de xiang ying bian hua 。jie guo biao ming ,tong zhi jie ying xiang xi jun de xi bao huo xing he bao wai ju ge wu fen bi ,di nong du (0.1 mM)ci ji bao wai ju ge wu fen bi ,dan gao nong du (1.5 mM)yi zhi fen bi 。guan neng tuan fen xi fa xian tong xie pai hou tai jian -O-C=O(suo ji )ji tuan 、tai ju tang zhong C-O-Che C-O-Phe xian an Ihe xian an IIde xi shou feng fa xian ming xian wei yi ,zhe xie guan neng tuan shi xi bao biao mian dan bai zhi 、an ji suan he duo tang de te zheng pu dai ,shui ming zhe xie wu zhi can yu tong de xiang ying ,ke neng yu tong fa sheng jie ge 。sheng wu mo ji guang gong ju jiao guan cha tong xie pai ci ji le ,xi jun biao mian dan bai de fen bi ,zhe shi dui xi bao fen bi ji tong shang diao biao da de you li zheng ming 。zhi de zhu yi ,ben yan jiu shou ci fa xian Ⅲxing dan bai zhi fen bi ji tong de xian zhe xiang ying ,ta ke neng ci ji dan bai zhi fen bi bing tong guo tong dao dan bai shu chu dao xi bao bi biao mian ,zhe ye ke yi jie shi tong xie pai xi bao biao mian ju ge wu de zeng duo xiang xiang 。zeng shang ,yan jiu jie guo jie shi le tong xie pai xia xi jun de duo chong kang xing xiang ying ji zhi :xi bao bi biao mian fen bi da liang ju ge wu ,bao wai ju ge wu guan neng tuan yu tong li zi fa sheng jing dian deng zuo yong jie ge ,zu zhi tong li zi jin ru xi bao nei ;tong li zi tong guo ABCzhuai yun dan bai jin ru dao xi bao nei ,xi bao nei de tong kang xing ji yin xiang ying jiang guo liang tong li zi wai pai jiang di du xing ;liu dai xie ji tong gao du biao da ,ji ban guang an suan he gu guang gan tai de sheng wu ge cheng chan sheng chong jin shu ao ge fen zi ,cu jin CR3dui tong de jie du zuo yong ;Fe-Szhuang pei ji tong xian zhe xiang ying ,yin wei Cu(I)ke yi duo qu Feli zi wei dian yu liu jie ge xing cheng bao nei lei ji ke yi da dao bao hu xi bao de mu de 。

论文参考文献

  • [1].玉米(Zea mays L.)对铜胁迫的响应[D]. 司江英.扬州大学2007
  • [2].苜蓿中华根瘤菌—天蓝苜蓿共生固氮体系对铜胁迫的响应及抗铜工程菌构建[D]. 孔召玉.西北农林科技大学2015
  • [3].铜胁迫诱导蛋白的鉴定及CuZn-SOD在铜锈导的抗氧化防护中的作用[D]. 张红晓.南京农业大学2007
  • [4].EDDS缓解过量铜对水稻生理生化和表观遗传学的影响[D]. 谭珺隽.武汉大学2014
  • [5].羊栖菜对重金属铜的吸附及生理响应[D]. 林立东.东北林业大学2014
  • [6].芦苇-AMF共生系统的铜污染修复潜能及其机制研究[D]. 吴洁婷.哈尔滨工业大学2015
  • [7].紫鸭跖草对铜的积累规律及在铜胁迫下的生理反应研究[D]. 黄长干.湖南农业大学2007
  • [8].铜胁迫下不同种群鸡眼草的生理响应及酸性转化酶分子机制研究[D]. 张峦.武汉大学2014
  • [9].活性氧和生长素参与拟南芥生长发育的研究[D]. 袁红梅.武汉大学2013
  • [10].兼性金属型植物齿果酸模生物量分配变异及其机制[D]. 黄五星.武汉大学2011
  • 读者推荐
  • [1].氮掺杂碳基酸性离子液体的形貌调控及其在催化转化生物质反应中的应用研究[D]. 孙英楠.东北师范大学2018
  • [2].养殖场废弃物厌氧发酵过程中反硝化功能基因变化机理研究[D]. 张凯煜.西北农林科技大学2019
  • [3].重金属铜和锌对厌氧发酵过程中抗生素抗性基因影响机制研究[D]. 张然然.西北农林科技大学2019
  • [4].抗生素对牛粪厌氧发酵功能微生物及抗性基因影响机理研究[D]. 张鑫.西北农林科技大学2019
  • [5].长江口滨岸水环境中抗生素抗性基因的赋存特征[D]. 郭行磐.华东师范大学2019
  • [6].细菌耐药基因高通量检测方法的建立[D]. 宋燚.军事科学院2019
  • [7].白腐真菌强化处理铅污染农业废物及其对铅的抗性机理研究[D]. 黄超.湖南大学2017
  • [8].玉米苗期根系响应重金属铅胁迫的基因表达调控研究[D]. 张永中.四川农业大学2015
  • [9].杨树对重金属镉胁迫的分子生理响应机制研究[D]. 何佳丽.西北农林科技大学2014
  • [10].基于罗丹明螺环隐色体的荧光增强型分子探针的研究[D]. 李宏林.大连理工大学2010
  • 论文详细介绍

    论文作者分别是来自东北师范大学的黄宁,发表于刊物东北师范大学2019-07-08论文,是一篇关于铜胁迫论文,抗性响应机制论文,抗铜基因论文,差异表达基因论文,东北师范大学2019-07-08论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自东北师范大学2019-07-08论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    黄宁:Cupriavidus gilardii CR3对铜胁迫的响应机制研究论文
    下载Doc文档

    猜你喜欢