欧式及美式“巴黎期权”定价模型仿真与优化

欧式及美式“巴黎期权”定价模型仿真与优化

论文摘要

衍生品是一种金融工具,它们的到期日的损益依赖于基础资产,其基础资产可以是股票,股票指数,期货,利率等。在金融市场的不断发展过程中,出现了大量满足投资者需要的全新衍生证券。而一些衍生证券复杂的特性,决定了其定价的难度。路径相关的期权合同是其中最难定价的。它们到期日的损益极大程度地依赖于基础资产的价格路径。本论文主要是建立了一种美式及欧式巴黎期权的定价模型及相关定价技术。这种期权合同有处理路径相关的特性,此外它的到期期限是不断变化的。文章针对累积式与连续式巴黎期权作出定价,应用随机过程理论,三叉树模型,并通过C++编程实现期权价格的计算,最后对计算结果以及仿真效果作出了分析。

论文目录

  • 摘要
  • Abstract
  • Chapter 1: Introduction
  • 1.1 Setting the ground
  • 1.2 Survey of Literature
  • 1.3 Thesis Structure
  • Chapter 2: Fundamental Concepts
  • 2.1 Option Pricing Preliminaries
  • 2.1.1 The Process for Stock Prices
  • 2.1.2 Risk-Neutral Valuation
  • 2.2 Tree Model
  • 2.3 Tree Model for Option with Barrier Feature
  • 2.4 Auxiliary State Vector
  • Chapter 3: Pricing Parisian Options
  • 3.1 Pricing Cumulative Parisian Options
  • 3.2 Pricing Consecutive Parisian Options
  • Chapter 4: Numerical Evaluation
  • 4.1 The Regular Trinomial Tree
  • 4.2 Trinomial Tree and Barrier Feature
  • 4.3 Trinomial Tree and Excursion Period
  • 4.4 Numerical Results
  • Conclusion
  • Acknowledgements
  • Bibliographie
  • Appendix A: C++ program
  • Appendix B: Imported data structure classes
  • 相关论文文献

    标签:;  ;  ;  ;  ;  ;  

    欧式及美式“巴黎期权”定价模型仿真与优化
    下载Doc文档

    猜你喜欢