人源腺苷酸激酶4结构和功能的研究

人源腺苷酸激酶4结构和功能的研究

论文摘要

腺苷酸激酶广泛存在于生物体内,参与细胞内能量和核苷酸代谢。它们催化可逆的磷酸转移反应,将三磷酸腺苷酸或鸟苷酸上的γ磷酸转移到单磷酸腺苷酸上,该反应需要镁离子的辅助。腺苷酸激酶属于单磷酸核苷酸激酶家族,该家族还包括鸟苷酸激酶,胸腺嘧啶激酶,和鸟嘧啶/胞嘧啶激酶。所有这些酶有共同典型的α/β折叠,其中α-螺旋包围着以β-片组成的核心,氨基端有共同的磷酸供体结合的P-loop。所有的腺苷酸激酶由三个结构域组成:CORE结构域,LID结构域,和一个单磷酸腺苷酸结合的NMPbind结构域。根据LID结构域的长短可以将腺苷酸激酶分为长亚型和短亚型。短亚型腺苷酸激酶的LID结构域由柔性的环组成,而长亚型腺苷酸激酶的LID结构域由四片反平行的折叠片组成。AK4是目前发现的AK家族中唯一一个没有AK催化活性的特殊成员,AK4的生理功能以及失活的原因至今仍一无所知。因此本论文对AK4的结构和功能以及催化机理进行了全面的研究。AK4中Gln159不能像其它AK中的Arg一样与转移中的磷酸基团相互作用形成氢键而稳定反应中间态,因此像其它AK一样的磷酸转移反应不能在AK4中发生,这就是为什么母体AK4无论在体外酶活实验,还是在体内突变互补实验中都没有表现出任何AK的活性。虽然,AK4没有表现出AK的催化活性,然而从AK4与GP5的晶体结构,以及AK4(Q159R)突变体能够有AK催化活性等实验结果都可以看出,AK4本身还具有底物结合能力。AK4(Q159R)突变体能够将GTP上的磷酸基团转移到AMP上,因此AK4可以结合GTP,AMP,GDP和ADP等核苷酸。因此,由于参与催化磷酸转移的重要氨基酸Arg被Gln取代,母体AK4不具有AK催化活性,但仍然具有核苷酸结合能力,我们可以推测,AK4在体内可以作为核苷酸的载体而发挥作用。通过检测AK4的mRNA和蛋白水平,我们发现AK4的表达水平在细胞压力(如Hypoxia)存在下都会大幅升高。因此,AK4有可能是细胞压力反应蛋白,在细胞存在压力情况下表达上升。对本底AK4表达水平高的HEK293细胞进行AK4 siRNA实验表明,AK4的siRNA对HEK293细胞的生长,形态,存活有很大影响,且随AK4表达抑制程度增高影响越大;而且AK4蛋白表达被抑制会导致HEK293细胞很难形成克隆。因此可以看出,AK4对HEK293细胞的生长及发育过程是十分重要的。在本底AK4表达水平低的细胞SH-SY5Y中过表达AK4蛋白实验表明,显微镜下观察,过表达AK4的SH-SY5Y细胞的形态和密度与对照组并无明显差异;MTT测细胞活性实验也进一步证明,过表达AK4对SH-SY5Y存活率没有明显影响。但是,在细胞压力(H2O2处理)情况下,AK4过表达的细胞要比对照组细胞存活率高,换言之,AK4过表达可以保护SH-SY5Y细胞对抗H2O2引起的细胞死亡。上述实验结果可以看出,AK4可能是细胞压力反应的蛋白,AK4的表达对细胞生长及发育很重要,且AK4的表达对细胞起保护作用。本文进一步研究AK4在体内发挥作用的可能的机制,我们试图寻找AK4相互作用的蛋白。通过对AK4-FLAG的免疫共沉淀及质谱分析得到线粒体内膜蛋白ANT可能参与AK4的相互作用,然后进行反向的免疫共沉淀实验进一步确定了AK4与ANT的相互作用。在细胞面对氧化压力的情况下,ANT与AK4之间相互作用会增强,因此我们推测,ANT与AK4的相互作用有可能参与到AK4在氧化压力下保护细胞的过程中。为进一步了解AK4与其它蛋白的相互作用,我们通过体外表达纯化人源的AK4,以及与AK4序列高度相似的AK3的His标签融合蛋白,在体外进行了His的pull-down实验。体外的His-tagged pull-down进一步确定了AK4与ANT的相互作用,而且,还发现了新的与AK4相互作用的蛋白ATP合成酶F1复合物的alpha和beta亚基。另外据报导ANT在线粒体内膜上与ATP合成酶形成大的复合体(ATP synthasome),因此,对AK4相互作用蛋白的研究可以提示,AK4有可能参与到与细胞线粒体内ATP合成及转运相关途径中。在AK4中,171位的Leu突变为Pro导致HingeⅣ区域结构发生变化,HingeⅣ的结构也伴随着HingeⅢ的结构发生变化,这种Hinge区域的结构变化最终导致AK4整体结构发生大规模构象变化。这种“twisted-and-closed”构象的AK4(L171P)的结构为蛋白质结构域之间的运动以及蛋白构象变化提供了直接的模型,揭示了Hinge区域如何直接调节蛋白的结构变化。而且在AK家族中,提供了一个新的AK结构构象,而且这种“关闭”结构并不是由底物或其类似物的结合引起的。对AK4这个不具有酶学活性的特殊AK进行了可能的生理功能研究,发现AK4更可能是细胞内的调节蛋白。对AK4结构的研究可以看出,AK4的结构具有非常大的柔性,结构域之间的相对运动幅度较大,对AK4的结构的研究结果为AK4作为一个调节蛋白发挥功能的假设提供了又一证据。综上所述,本文对AK4进行了较全面的结构和功能的研究。通过突变及结构分析,AK4虽不具有AK催化活性,但仍然具有核苷酸结合能力,推测AK4在体内可以作为核苷酸的载体而发挥作用。通过对细胞生物学的研究得出AK4受细胞压力反应调节,AK4的表达对细胞生长及发育至关重要。对AK4相互作用蛋白的研究可以提示,AK4有可能参与到与细胞线粒体内ATP合成及转运相关途径中。对AK4(L171P)的结构研究为蛋白质结构域之间的运动以及蛋白构象变化提供了直接的模型,揭示了Hinge区域如何直接调节蛋白的构象变化。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  • 1.1 细胞内ATP的生成及转运
  • 1.1.1 概述
  • 1F0-ATP合成酶'>1.1.2 ATP在线粒体中合成及F1F0-ATP合成酶
  • 1.1.2.1 ATP合成酶的分子组成及结构
  • 1.1.2.2 ATP合成酶的催化机理
  • 1.1.2.3 ATP合成酶的超复合物
  • 1.1.3 ATP的转运及腺苷酸转位酶
  • 1.1.3.1 概述
  • 1.1.3.2 ANT的发现及早期研究
  • 1.1.3.3 ANT的结构研究
  • 1.1.3.4 ANT的底物结合及催化特征
  • 1.1.3.5 ANT是否以二体形式发挥功能
  • 1.1.3.6 ANT的生理功能研究
  • 1.1.4 小结
  • 1.2 腺苷酸激酶
  • 1.2.1 概述
  • 1.2.2 腺苷酸激酶(AK)三维结构的研究
  • 1.2.3 腺苷酸激酶(AK)结构域运动的研究
  • 1.2.4 腺苷酸激酶(AK)催化机理研究
  • 1.2.5 腺苷酸激酶(AK)生理功能研究
  • 1.2.6 腺苷酸激酶4(AK4)的研究
  • 第二章 材料与方法
  • 2.1 人源AK4及其突变体酶活的研究
  • 2.1.1 人源AK4及其突变体基因表达、蛋白纯化
  • 2.1.2 AK4及其突变体酶的活性研究
  • 2.2 AK4在细胞分子水平功能研究
  • 2.2.1 AK4蛋白多克隆抗体的制备
  • 2.2.2 Wersten-Blotting
  • 2.2.3 细胞培养和转染
  • 2.2.4 AK4基因的RNA干扰研究
  • 2.2.5 单克隆形成研究
  • 2.2.6 AK4基因在真核细胞的表达
  • 2.2.7 双氧水和缺氧处理细胞
  • 2.2.8 细胞死亡分析
  • 2.2.9 ALS小鼠
  • 2.3.AK4相互作用蛋白的鉴定及检验
  • 2.3.1 免疫共沉淀
  • 2.3.2 质谱分析和蛋白鉴定
  • 2.3.3 AK4-FLAG体内免疫荧光实验
  • 2.3.4 与AK4相互作用的蛋白的表达
  • 2.3.5 体外His-tagged pull down实验
  • 2.4.AK4(L171P)晶体结构研究
  • 2.4.1 AK4(L171P)基因表达、蛋白纯化
  • 2.4.2 晶体培养和衍射数据的收集与处理
  • 2.4.3 AK4(L171P)晶体结构解析和结构模型精修
  • 第三章 结果与讨论
  • 3.1 人源AK4及其突变体酶活的研究
  • 3.1.1 AK4及其突变体AK活性的研究结果
  • 3.1.2 结果分析与讨论
  • 3.2 AK4在细胞分子水平功能研究
  • 3.2.1 AK4抗体性质研究
  • 3.2.2 AK4在细胞压力下的表达
  • 3.2.3 AK4 siRNA的研究
  • 3.2.4 AK4过表达对细胞的影响
  • 3.2.5 实验结果分析与讨论
  • 3.3.AK4相互作用蛋白的鉴定及检验
  • 3.3.1 AK4-FLAG免疫共沉淀及蛋白鉴定
  • 3.3.2 ANT与AK4相互作用研究
  • 3.3.3 在细胞氧化压力下ANT与AK4相互作用研究
  • 3.3.4 AK4-His体外pull-down实验及蛋白鉴定
  • 4.4.AK4(L171P)晶体结构研究
  • 4.4.1 AK4序列比对及分析
  • 4.4.2 蛋白纯化和结晶结果
  • 4.4.3 晶体数据收集及解析
  • 4.4.4 人AK4(L171P)的晶体结构
  • 第四章 小结与展望
  • 参考文献
  • 致谢
  • 已发表论文
  • 相关论文文献

    标签:;  ;  ;  ;  

    人源腺苷酸激酶4结构和功能的研究
    下载Doc文档

    猜你喜欢