论文摘要
合成孔径雷达(Synthetic Aperture Radar,SAR)作为微波遥感的代表,在地球科学遥感领域有着独特的优势,广泛地应用于军事、农业、地质、海洋监视、灾情监视等领域。如何实现SAR图像的目标的准确识别,同时提高运算速度,成为了图像处理与解译领域的研究热点。作为建立在统计学习理论基础上新一代的机器学习技术,支持向量机(Support Vector Machine,SVM)在小训练样本、非线性情况下具有较好的泛化性能和推广能力。本文将支持向量机的有关方法应用于SAR图像的目标识别方向,主要工作有:介绍SVM理论,总结出SVM的基本思想和应用方向;综述SAR图像目标识别的研究现状,总结SAR图像目标识别的一般流程和关键技术;介绍基于小波变换的目标特征提取方法,验证该方法具有较高的特征提取准确率;介绍基于核的主成分分析方法(KPCA),采用构造核函数的方式,巧妙避开非常复杂繁琐的点积运算,有效地解决了大规模样本集带来的巨大运算量难题,提高运算速度;在常用支持向量机算法的基础上提出增量训练算法,即根据训练集中支持向量的分布特点,用支持向量来替代样本集,实现了小规模的矩阵运算。经仿真验证,基于增量算法支持向量机的SAR图像目标识别,在小样本、非线性情况下能够达到较高的识别率,并且提高了运算速度,缩短了训练时间。最后,采用KPCA特征选择方法和支持向量机结合的方法对SAR图像进行目标识别,试验结果证明:采用KPCA特征选择方法和SVM增量训练算法结合的方法可以取得较高的识别精度,且运行时间大大缩短,是一种有效的SAR目标识别方法。
论文目录
相关论文文献
- [1].基于人工鱼群算法的孪生支持向量机[J]. 智能系统学报 2019(06)
- [2].基于改进支持向量机的温室大棚温度预测[J]. 科技创新与应用 2020(10)
- [3].结构化支持向量机研究综述[J]. 计算机工程与应用 2020(17)
- [4].支持向量机理论及应用[J]. 科学技术创新 2019(02)
- [5].加权间隔结构化支持向量机目标跟踪算法[J]. 中国图象图形学报 2017(09)
- [6].多分类孪生支持向量机研究进展[J]. 软件学报 2018(01)
- [7].模糊型支持向量机及其在入侵检测中的应用[J]. 科技创新与应用 2018(11)
- [8].从支持向量机到非平行支持向量机[J]. 运筹学学报 2018(02)
- [9].支持向量机的基本理论和研究进展[J]. 长江大学学报(自科版) 2018(17)
- [10].孪生支持向量机综述[J]. 计算机科学 2018(11)
- [11].一种新的基于类内不平衡数据学习支持向量机算法[J]. 科技通报 2017(09)
- [12].分段熵光滑支持向量机性能研究[J]. 计算机工程与设计 2015(08)
- [13].有向无环图-双支持向量机的多类分类方法[J]. 计算机应用与软件 2015(11)
- [14].基于支持向量机的股票价格预测模型研究与应用[J]. 课程教育研究 2016(28)
- [15].灰狼优化的混合参数多分类孪生支持向量机[J]. 计算机科学与探索 2020(04)
- [16].基于属性约简—光滑支持向量机的中小企业信息化评价研究[J]. 软件工程 2020(07)
- [17].基于稀疏孪生支持向量机的人脸识别[J]. 信息技术 2020(07)
- [18].基于总类内分布的松弛约束双支持向量机[J]. 济南大学学报(自然科学版) 2018(04)
- [19].基于多分类支持向量机的评估模型研究[J]. 数学的实践与认识 2017(01)
- [20].改进的支持向量机在微博热点话题预测中的应用[J]. 现代情报 2017(03)
- [21].多核在线支持向量机算法研究及应用[J]. 宜宾学院学报 2017(06)
- [22].基于改进遗传算法的支持向量机参数优化方法[J]. 计算机与现代化 2015(03)
- [23].一种层次粒度支持向量机算法[J]. 小型微型计算机系统 2015(08)
- [24].自训练半监督加权球结构支持向量机多分类方法[J]. 重庆邮电大学学报(自然科学版) 2014(03)
- [25].四类基于支持向量机的多类分类器的性能比较[J]. 聊城大学学报(自然科学版) 2014(03)
- [26].一种模糊加权的孪生支持向量机算法[J]. 计算机工程与应用 2013(04)
- [27].一种采用粗糙集和遗传算法的支持向量机[J]. 山西师范大学学报(自然科学版) 2013(01)
- [28].基于在线支持向量机的无人机航路规划技术[J]. 电光与控制 2013(05)
- [29].贪婪支持向量机的分析及应用[J]. 计算机工程与应用 2012(24)
- [30].一种改进的双支持向量机[J]. 辽宁石油化工大学学报 2012(04)