论文摘要
随着MOSFET特征尺寸的不断减小,为了有效抑制器件的短沟道效应,一直以来,在MOSFET栅介质层厚度不断减小的同时,其源漏结深也不断减小。然而,随着器件尺寸进一步缩小到纳米尺度,超浅的源漏结深往往导致工艺难度显著增加,寄生效应大幅增强,从而使得源漏技术成为限制MOSFET器件进一步按比例缩小的瓶颈之一。目前,新型源漏技术的研究已成为国际集成电路制造领域的研究热点之一。对此,本文提出了两种新型的源漏技术,并通过模拟和实验进行了系统研究。本文所提出的第一种新型源漏技术为“新型肖特基源漏MOSFET”。源漏问题的一种可能解决方案是采用新的源漏材料,如肖特基源漏。但是,常规肖特基源漏MOSFET都呈现了很高的关态电流。本文提出的肖特基源漏MOSFET有两种结构,一种为“不对称肖特基源漏MOSFET(ASSD MOSFET)”,其特征是:源漏肖特基势垒不对称,源端采用高势垒,漏端采用低势垒。另一种为“双层肖特基源漏MOSFET(DSSD MOSFET)”。其特征为:源漏具有双层结构,上层的肖特基势垒高度较低,用于获得较高的开态电流;而下层的肖特基势垒高度较高,用于限制器件的关态电流。模拟结果显示,以上两种器件结构都可以显著提高器件的关态特性,并且通过调整设计参数可以进一步优化新结构器件的性能。此外,还设计了这两种器件结构的自对准工艺制备方案。本文所提出的第二种新型源漏技术为“TSB MOSFET”。TSB MOSFET的特征是源漏区与衬底间用绝缘层隔开,沟道和衬底连通,沟道区的掺杂采用阶梯函数的掺杂分布。模拟结果表明:TSB MOSFET能够获得比传统体硅器件和UTB器件更好或相似的抑制短沟道效应的能力和按比例缩小能力。设计了一种工艺制备方案并实验制备了TSB MOSFET。实验结果显示:所制备的TSB MOSFET具有与理论分析和模拟结果相一致的特性。同时,还设计了一种用于实现这种新器件结构的自对准工艺制备方法。此外,开发了一种简单廉价可控性较强的超薄Fin条制备技术。
论文目录
相关论文文献
- [1].Comparison of time-related electrical properties of PN junctions and Schottky diodes for Zn O-based betavoltaic batteries[J]. Nuclear Science and Techniques 2020(02)
- [2].Manipulating the coupling strength in a strongly coupled quantum dot-cavity system[J]. 量子电子学报 2020(01)
- [3].Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi_x/CoSi_2/Si Stack Interface[J]. Chinese Physics Letters 2020(03)
- [4].Comparative study of various methods for extraction of multi-quantum wells Schottky diode parameters[J]. Journal of Semiconductors 2020(10)
- [5].Temperature-dependent electrical properties of β-Ga_2O_3Schottky barrier diodes on highly doped single-crystal substrates[J]. Journal of Semiconductors 2019(01)
- [6].Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode[J]. Chinese Physics B 2019(02)
- [7].A New Parameter Extraction Method for Schottky Barrier Diodes[J]. Chinese Journal of Electronics 2019(03)
- [8].Hysteresis effect in current–voltage characteristics of Ni/n-type 4H-SiC Schottky structure[J]. Chinese Physics B 2019(11)
- [9].Effect of Au/Ni/4H–SiC Schottky junction thermal stability on performance of alpha particle detection[J]. Chinese Physics B 2018(08)
- [10].Design and Realization of Schottky Barrier Didoes in 130nm CMOS Process[J]. Journal of Beijing Institute of Technology 2017(02)
- [11].Schottky barrier parameters and structural properties of rapidly annealed Zr Schottky electrode on p-type GaN[J]. Journal of Semiconductors 2017(06)
- [12].Analysis of structural,optical and electrical properties of metal/p-ZnO-based Schottky diode[J]. Journal of Semiconductors 2017(10)
- [13].Inhomogeneous barrier height effect on the current–voltage characteristics of an Au/n-InP Schottky diode[J]. Journal of Semiconductors 2015(12)
- [14].Characterization of vertical Au/β-Ga_2O_3 single-crystal Schottky photodiodes with MBE-grown high-resistivity epitaxial layer[J]. Chinese Physics B 2016(01)
- [15].Improvements on high voltage capacity and high temperature performances of Si-based Schottky potential barrier diode[J]. Journal of Semiconductors 2015(02)
- [16].A novel physical parameter extraction approach for Schottky diodes[J]. Chinese Physics B 2015(07)
- [17].Enhanced performances of AlGaInP-based light-emitting diodes with Schottky current blocking layers[J]. Chinese Physics B 2015(09)
- [18].High performance lateral Schottky diodes based on quasi-degenerated Ga_2O_3[J]. Chinese Physics B 2019(03)
- [19].An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells[J]. Chinese Physics Letters 2018(07)
- [20].A High Power 320–356GHz Frequency Multipliers with Schottky Diodes[J]. Chinese Journal of Electronics 2016(05)
- [21].Modulation of WN_x/Ge Schottky barrier height by varying N composition of tungsten nitride[J]. Chinese Physics B 2015(07)
- [22].Planar Schottky varactor diode and corresponding large signal model for millimeterwave applications[J]. Journal of Semiconductors 2014(05)
- [23].Longitudinal Schottky spectra of a bunched Ne~(10+) ion beam at the CSRe[J]. Chinese Physics C 2013(10)
- [24].Analysis and simulation of a 4H-SiC semi-superjunction Schottky barrier diode for softer reverse-recovery[J]. Chinese Physics B 2012(01)
- [25].High frequency performance of nano-scale ultra-thin-body Schottky-barrier n-MOSFETs[J]. Science China(Information Sciences) 2011(08)
- [26].Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator[J]. 半导体学报 2011(12)
- [27].Electrical characteristics of Pt-ZnO Schottky nano-contact[J]. Science China(Physics,Mechanics & Astronomy) 2010(01)
- [28].A revised approach to Schottky parameter extraction for GaN HEMT[J]. 半导体学报 2010(07)
- [29].Quantum compact model for thin-body double-gate Schottky barrier MOSFETs[J]. Chinese Physics B 2008(08)
- [30].Review of gallium oxide based field-effect transistors and Schottky barrier diodes[J]. Chinese Physics B 2019(01)