新造和现存船舶压载水处理及管理系统模型设计与优化

新造和现存船舶压载水处理及管理系统模型设计与优化

论文摘要

目前各国政府正采取措施,寻找新技术以减少环境恶化带来的对健康、生态以及社会经济造成的损害。科学家可以分析这些海洋环境威胁,确定它们的组成、数量以及他它们对人类和环境所造成的威害的程度。经由船舶压载水进行外来海洋生物及淡水生物的传播,在世界范围内很可能是最为普遍的一种方式。本论文重点回顾了压在水处理和管理方面的一些方法,目前这些方法都是具有重大意义的,并包括国际海事组织(IMO)制定的压在水及沉淀物方面的法规和规范。它们包括压压载水的更换、加热、过滤,紫外线处理法、电解法、臭氧处理法等。大部分的设计目前刚刚完成,回顾这些方法的主要目的是对现存的合理的处理技术的有效性和状况进行比较,并得出这些方法的成本数据指标。本论文的后半部分概括了紫外线杀菌器的设计及模拟研究结果。紫外线法是一种被用来杀菌并对压载水处理非常有效的技术。它的花费不高,而且更重要的是对环境是友好型的。本文通过计算流体力学(CFD)的方法对紫外线杀菌器的有效性进行了验证。通过用MATLAB 7.3 software和Fluent 6.3.26的计算,本文还得出了紫外线杀菌器的设计参数以及最大流量、流速、温度、压力、扰动能量、紫外线分布量等等。

论文目录

  • ACKNOWLEDGEMENTS
  • 摘要
  • ABSTRACT
  • TABLE OF CONTENTS
  • LIST OF ABBREVIATIONS
  • CHAPTER 1 INTRODUCTION
  • 1.1 Overview
  • 1.2 Ballast Water and Sediment
  • 1.2.1 Estimating Capacities' of Ballast Water on Vessel
  • 1.2.2 Ballasting and Risk Assessment
  • 1.2.3 Ballast Retention Period on Board Ship
  • 1.2.4 Marine Invasive Species Carried in Ballast Water
  • 1.3 Main Ideas of this Thesis
  • CHAPTER 2 BALLAST WATER MANAGEMENT
  • 2.1 Introduction
  • 2.2 Guidelines and Objective Background for Ballast Water Management
  • 2.3 Management and Control Requirement for Ships
  • 2.3.1 Ballast Water Management Plan
  • 2.3.2 Ballast Water Records Book
  • 2.3.3 Ballast Water Management for Ships
  • 2.4 Ballast Water Exchange
  • 2.4.1 Flow-through Method
  • 2.4.2 Sequential Method
  • 2.4.3 Common Ballast Water Overflow System
  • 2.4.4 Measuring Success in Implementing Ballast Water Exchange Procedures
  • 2.4.5 Summary of Safety Precautions to Consider in Ballast Water Exchange Procedures
  • 2.5 Ballast Water Exchange Area
  • 2.6 Sediment Management for Ships
  • CHAPTER 3 BALLAST WATER TREATMENT
  • 3.1 Introduction
  • 3.2 Main Potential Treatment Options
  • 3.2.1 Filtration and Separation Systems
  • 3.2.2 Biocides
  • 3.2.3 Heat Treatment
  • 3.2.4 Ultraviolet Radiation
  • 3.2.5 Magnetic Treatment
  • 3.2.6 Ozone
  • 3.2.7 Pulse Plasma
  • 3.2.8 Deoxygenation
  • 3.2.9 Ballast Tank Coating
  • 3.3 Assessment of Technologies
  • 3.3.1 Safe
  • 3.3.2 Cost Effective
  • 3.3.3 Technically Practical
  • 3.3.4 Biologically Effective
  • 3.3.5 Environmentally Compatible
  • 3.4 Brief Description of the Technologies Presented
  • 3.4.1 Heat Treatment in Tank
  • 3.4.2 Physical Separation and Disinfection(SEDNA System Including PeraClean)
  • 3.4.3 Electrochemical Disinfection(ECS System)
  • 3.4.4 Filtration and Advanced Oxidation(Alfa Laval BWM System)
  • 3.4.5 Biocides Disinfection(Bal Pure System)
  • 3.4.6 Filtration and UV Irradiation(GloEn-PatrolTM System)
  • 3.4.6.1 Evaluation of the Treated Ballast Water
  • TM'>3.4.6.2 Risk Characterization for GloEn-PatrolTM
  • 3.4.7 Flocculating Agents(Hitachi Ballast Water Purification System)
  • 3.4.7.1 Application capacity
  • 3.4.7.2 Risk Assessment
  • 3 Ballast Water Treatment System)'>3.4.8 Ozone Treatment(NKO3 Ballast Water Treatment System)
  • 3.4.8.1 Active Substances,Relevant Chemicals and Other Chemicals
  • 3.4.8.2 Risk Assessment
  • 3.4.9 Electrolytic Process(Hybrid Ballast Water Treatment System)
  • 3.4.9.1 Active Substances,Relevant Chemicals and Other Chemicals
  • 3.4.9.2 Risk Assessment
  • 3.5 Conclusion
  • CHAPTER 4 UV DISINFECTION IN SHIP BALLAST WATER TREATMENT
  • 4.1 Introduction
  • 4.2 UV Radiation Disinfection
  • 4.3 Selection and Installation of a UV Disinfection System
  • 4.3.1 Technical Feasibility
  • 4.3.1.1 Disinfection Performance
  • 4.3.1.2 Plant Hydraulic
  • 4.3.1.3 Structural Modifications
  • 4.3.1.4 Electrical Requirements
  • 4.3.2 Design Criteria
  • 4.3.3 Equipment Selection
  • 4.4 UV Disinfection System Description
  • 4.4.1 The Reactor Description
  • 4.4.2 Description of UV Lamp and its Ballast
  • 4.4.3 Pretreatment or Filtration
  • 4.4.4 Demonstration of the UV Disinfection System in Pilot Plant
  • 4.5 Methods and Procedure
  • 4.6 Conception of UV Intensity,UV Dose and UV Dose Distribution
  • 4.6.1 UV Intensity
  • 4.6.2 UV Dose and Dose Distribution
  • 4.7 Calculating UV Dose and Dose Distribution
  • 4.7.1 Dose Distribution for 10 Lamps
  • 4.7.2 Dose Distribution for 3 Lamps
  • 4.8 Conclusion
  • CHAPTER 5 CFD MODEL FOR UV DISINFECTION
  • 5.1 Introduction
  • 5.2 Model Simulation
  • 5.2.1 Model Construction
  • 5.2.2 Mesh of the Model
  • 5.2.3 Problem Geometry
  • 5.2.3.1 Reynolds Average Navier-Stroke's Equation
  • 5.2.3.2 Standard k-epsilon Model
  • 5.2.3.3 CFD Model Result
  • 5.3 Flow Model and Prediction
  • 5.4 Dose-Response Data Analysis and Flow Relationship
  • 5.5 Conclusion
  • CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS
  • 6.1 Summarized and Conclusions
  • 6.2 Discussions on Research
  • 6.3 Recommendations
  • References
  • APPENDICES
  • Appendix A Ten of the Most Unwanted Aquatic Bio-invasive Species Causing Major Impact List
  • Appendix B Regulations for Ships' Ballast Water Management and Sediment
  • Appendix C Flow Chart of Ballast Water Exchange Plan
  • Appendix D Total Dose Amount on 256 Particles Table for 10 UV Lamps
  • Appendix E Dose Distribution MATLAB Program for Transverse Sectional Surface with 10 UV Lamps
  • 3/hr Flow Rate'>Appendix F Figure of Dose Distribution for 17m3/hr Flow Rate
  • Appendix G Result Figures by Fluent
  • Biography
  • 相关论文文献

    标签:;  ;  ;  ;  ;  

    新造和现存船舶压载水处理及管理系统模型设计与优化
    下载Doc文档

    猜你喜欢