论文摘要
目前,我国铝工业迅速发展,氧化铝产量已达1900万吨/年。围绕节能减排,开展氧化铝行业技术创新的需求日益迫切。氧化铝焙烧是对氧化铝产、质量和生产能耗有重大影响的工序之一,目前该工序已普遍采用气态悬浮焙烧工艺。众多气态悬浮焙烧生产表明,该工艺在设备配置、操作调节和过程控制等方面仍有很大改进潜力。对焙烧过程开展设备、操作和控制的优化研究有利于实现焙烧生产的增产、节能和降耗。本文在国家自然科学基金的资助下,以年产5万吨的气态悬浮焙烧炉为试验对象,集成应用FLUENT、人工神经网络、遗传优化、模糊控制、专家系统等技术,对氧化铝焙烧过程开展设备、控制和指导的整体优化。研究成果主要有:(1)针对焙烧燃烧系统缺少配置依据,开展炉体燃烧优化的仿真研究。采用FLUENT对主炉P04仿真研究得出:某燃料的最佳空燃比值(A/F)以及低氧完全燃烧对应的最佳操作条件;最佳下料区域为Ⅳ部炉体,最佳V08预热烧咀布置区域为Ⅱ部炉体;保持V08烧咀小比例投入燃料有利减少NO生成;提高空气预热温度节能效果明显。仿真得到NOx、CO、CO2等废气生成量,为生产操作提供重要参考。(2)针对焙烧旋风器工况分析的不足,开展气固分离研究。对预热旋风器P01采用雷诺应力输运模型求解气场,拉格朗日坐标求解颗粒运动轨迹。计算不同的工况风速、温度、漏风率和物理结构下旋风器分离效率,探讨了P01环流式旋风器和收尘锁气设备改造方案,为操作提供优化参考。(3)针对现有描述焙烧过程模型的缺乏,提出采用神经网络(ANN)、遗传算法(GA)、灰色模型(GM)优化建模,建立温度预测、废气软测量评价和产能评估三大过程模型。温度预测模型由GM(1,1)与ANN组合优化实现,绝对误差±5℃评价模型,预报命中率达90%以上,可以指导生产调节。废气软测量模型结构为ANN{3-5-4},用绝对误差小于1评价模型,预测准确率达88.6%。基于FLUENT仿真结果对新工况排废的预测,具二次仿真性。产能评估模型结构为ANN{3-9-1},用相对误差小于1%评价模型,预报准确率达96%。产能ANN模型比回归模型更能揭示系统关系。(4)针对焙烧过程常规、单一PID控制方式的不足,提出并建立了焙烧过程模糊专家控制系统。设计了一种Complex-PID控制器和空燃比专家调节器,并提出了一种焙烧过程分段调节控制策略。其中,控制器由FNN单元、PID单元和阈值调节单元组成,采用模糊方法、神经网络和遗传算法对PID进行调整,保证具有最优或次优控制参数。调节器综合数值模拟、视频监控和烟气氧量等反馈信息寻优调节。分段调节控制策略实现了不同工况下温度的优化控制,精度达±5℃,稳定了炉况。(5)针对焙烧生产和管理工作的不完善,提出并架构了焙烧过程ANNES指导系统。采用产生式规则表示过程显式知识,ANN模型表示隐式知识,两类知识由隶属函数实现转化。建立风机故障、燃烧调节和状态分析知识库,实现了燃烧和过程的分析和监测;建立GA-ANNES优化模型库,实现了过程能耗分析,解决了高产低耗参数优化问题;建立旋风器操作指导知识库,实现了旋风分离ANNES分析诊断和操作优化。(6)开发了基于PLC的SCADA系统和基于VC++、Matlab的集成优化系统。两系统间的通讯采用OPC技术、自定协议和DeviceNet总线方式实现。PLC系统实现基础控制,优化系统集成神经网络、遗传算法、专家系统实现过程的优化和控制。本文开发的集成优化系统在年产能5万吨气态悬浮焙烧炉工业试验中取得很好的优化效果:热耗降低了14.3%,达到了3.09MJ/kg;主炉温度降低了8.8%,控制在1040±5℃;含氧量降低了75%,控制在1~2%;NO排量降低了53.9%,控制在53ppm。