论文摘要
本文致力于涉及目前泛函分析学界关注两个不同研究领域的内容,并将它们有机结合起来——Banach空间的Lipschitz嵌入和Lipschitz映射的可微性.我们采取了全新的方法,得到诸如“对于任何凸集,在像空间具有Radom-Nikodym性质(RNP)的情况下,Lipschitz嵌入与线性嵌入等价”,“如果可分空间X具有RNP,则对于X到c0的每个Lipschitz嵌入T,T(X)都不能包含一个其线性扩张是一个无穷维子空间的凸子集”等这样的出乎人们意料的结果.我们的基本做法是,通过Banach空间非支撑点集不空的闭凸集的精细刻划,从而建立了可分空间的闭凸集是”非零”测度集的特征-非支撑点集不空(第二章);然后将经典的Gǎteaux可微性定理局部化(也是某种程度上的广义化,第三章);即证明了定义在可分Banach空间闭凸集C上取值于具有RNP的Banach空间的每个Lipschitz映射f都是几乎处处Gǎteaux可微的,然后将它们应用到Banach空间中凸子集的线性嵌入问题(第三章)并研究了有关粗嵌入问题(第四章);最后(第五章)讨论了非空闭凸集具有超CCP的充要条件.