基于DSA扫描轨迹的锥束重建算法研究

基于DSA扫描轨迹的锥束重建算法研究

论文摘要

计算机断层成像(Computed Tomography,简称CT)是通过无损方式获取物体内部结构信息的一种技术手段,已被广泛地应用到医疗诊断、工业无损探伤、航空航天等领域。在数据采集的速度、空间分辨率以及射线的利用率等方面,锥束CT明显优于二维平行束和扇束CT,是现代CT成像领域内一个活跃的研究方向。在医学成像领域内,数字减影血管照影(Digital Subtraction Angiography,简称DSA)设备能够采集锥束投影数据并可对高对比度物体进行重建。近年来,由于平板检测器的出现,利用DSA设备生成低对比度物体断层图像的技术引起了广泛的关注。锥束投影的精确重建面临算法复杂、数值计算稳定性差及计算量剧增的难题,是锥束CT发展的一个瓶颈,也是制约DSA设备锥束断层重建质量的一个主要因素。目前,针对适合DSA设备扫描轨迹的锥束重建算法的研究工作较少,本文基于滤波反投影锥束重建算法对此进行一些探索性的研究,主要工作包括以下几个方面:DSA生成断层图像首选的扫描轨迹是满足短扫描重建条件的圆弧轨迹,目前阶段主要采用短扫描加权的FDK算法。FDK算法属于近似锥束重建,在较大锥角情况下其重建结果会产生锥束伪像。为此,本文首先研究重排类型的FDK衍生算法,并将重建质量最好的FDK-SLANT算法应用到无重排步骤的锥束投影重建中,改善了FDK算法存在的低对比度衰减伪像。该类型算法的特点是通过一些固定斜平面与检测器平面的交线确定不同投影视角上投影数据的滤波线。受该算法的启发,在斜平面绕转轴旋转过程中形成近似平面空间中,重新分析了FDK算法的推导过程,进而提出了一种利用转角及其增量关系改进经典FDK算法的新方法,并且将改进方法进一步应用到重排类型的T-FDK算法中。改进算法能够在保持FDK类型算法执行效率的同时,有效地解决了在锥角较大情况下FDK算法存在的低对比度衰减伪像,显著扩大了低对比度物体的锥向重建范围。改进后的T-FDK算法能够获得较好的重建结果,然而该算法需要将锥束投影数据重排为三维平行束投影。超短扫描轨迹FDK类型算法通过建立锥束投影与三维平行束投影之间的重排计算关系,避免了T-FDK算法的重排步骤。依据重建公式是否存在轨迹参数偏导数的计算项,超短扫描圆弧轨迹算法可分为两类,其中不含有轨迹参数偏导数计算项的重建算法数值计算精度高,然而其重建结果具有较小的锥向重建范围。在三维Radon逆变换分解的基础上,本文推导出一个新的偏导数计算与轨迹参数无关的锥束重建公式,使两类算法获得一致的重建结果,并且进一步将转角增量关系的改进措施推广引入到超短扫描轨迹的两类重建算法中,扩大了低对比度物体的锥向重建范围。当重建密度差较大的物体时,圆弧轨迹的FDK类型算法在较小锥角的切片图像上也会产生严重的涂污伪像。针对该问题,本文研究了Katsevich重建理论在圆弧轨迹上的应用,其重建计算的关键在于构造因子的确定。主要研究了基于几何图形法确定构造因子大小的方法,通过对检测器平面的有效划分,探讨了构造因子在检测器平面上的分布规律,并由此推导了满足投影数据采样精度的Katsevich类型重建公式,从而有效避免了FDK类型算法所存在的涂污伪像。不同于FDK类型算法,在同一个投影视角上,Katsevich类型算法需要沿三个方向对投影数据进行滤波,其中两个方向为非水平方向,而重建公式中基于Hilbert变换的滤波属于非局部运算,同时DSA检测器采集到的投影数据也存在轴向及横向截断。为此,论文进一步研究了利用保形的分段三次Hermite插值函数外插值截断的投影数据,从而允许Katsevich类型算法重建截断的投影数据。单圆弧轨迹所采集的锥束投影,理论上不能提供完备的Radon数据,目前已有的重建算法尚不能完善解决该轨迹上的伪像问题。为了确保锥束投影数据的完备性,本文研圆弧加直线扫描轨迹上Katsevich类型的锥束重建算法。Katsevich本人已讨论了Katsevich理论应用到该轨迹上的两个基本问题:构造因子的取值和PI线决定的有效反投影区域。本文对此作了进一步分析,研究了圆弧加直线轨迹锥束精确重建时轨迹扫描区间所需要满足的条件;补充了圆弧与直线轨迹交点位置处构造因子的分析,进而修正Katsevich所获得的重建公式;利用边界过渡的权重函数改善反投影区域边界投影数据的阶跃变化;推导了平板检测器下Katsevich类型的重建公式。由于在重建计算中含对轨迹参数的偏导数计算,当重建物体小且密布分布时,容易产生计算误差,影响重建图像的质量。本文利用超短扫描路径上重建算法的研究结果以及直线轨迹的特点,进一步推导出不含有轨迹偏导数的重建公式,改善了重建图像的质量。

论文目录

  • 摘要
  • Abstract
  • 1 绪论
  • 1.1 论文研究背景及意义
  • 1.2 CT成像技术的发展历史及研究现状
  • 1.2.1 CT设备的发展历史
  • 1.2.2 锥束投影重建算法的研究进展
  • 1.2.3 国内相关技术的研究状况
  • 1.3 DSA设备成像技术的发展及研究现状
  • 1.3.1 DSA设备成像技术的发展概况
  • 1.3.2 DSA设备锥束重建存在的问题
  • 1.4 论文研究工作及内容安排
  • 2 CT图像重建的基本理论
  • 2.1 术语及符号的约定
  • 2.2 CT成像的基本原理
  • 2.3 CT成像的数学基础
  • 2.4 二维滤波反投影重建算法
  • 2.4.1 二维Radon逆变换的几何含义
  • 2.4.2 平行束滤波反投影重建算法
  • 2.4.3 扇束滤波反投影重建算法
  • 2.4.4 扇束短扫描投影重建算法
  • 2.5 三维锥束重建算法的基础理论
  • 2.5.1 X射线变换与三维Radon变换
  • 2.5.2 Grangeat的中间函数
  • 2.5.3 三维Radon逆变换与Grangeat重建算法
  • 2.5.4 锥束精确重建的充要条件
  • 2.6 本章小结
  • 3 圆轨迹FDK类型锥束重建算法的改进
  • 3.1 改善FDK算法伪像的方法综述
  • 3.2 圆轨迹锥束投影几何及数据完备性
  • 3.3 FDK及其衍生的重排类型算法
  • 3.3.1 FDK算法
  • 3.3.2 P-FDK算法
  • 3.3.3 T-FDK算法
  • 3.3.4 FDK-SLANT算法
  • 3.4 基于FDK-SLANT的改进算法
  • 3.5 基于转角及其增量关系的FDK类型算法改进
  • 3.5.1 转角及其增量关系的分析
  • 3.5.2 FDK算法的改进
  • 3.5.3 T-FDK算法的改进
  • 3.6 实验结果与分析
  • 3.6.1 FDK-SLANT改进算法的实验比较
  • 3.6.2 适中锥角FDK类型改进算法的实验比较
  • 3.6.3 较大锥角FDK类型改进算法的实验比较
  • 3.7 本章小结
  • 4 超短扫描圆弧轨迹的锥束重建算法
  • 4.1 引言
  • 4.2 超短扫描轨迹的二维扇束重建算法
  • 4.2.1 扇束与平行数投影的两种重排关系
  • 4.2.2 Noo类型的超短扫描扇束重建算法
  • 4.2.3 Kudo类型的超短扫描扇束重建算法
  • 4.2.4 Kudo类型扇束重建公式的分析
  • 4.3 超短扫描轨迹的FDK类型锥束重建算法
  • 4.3.1 Noo类型的锥束重建算法
  • 4.3.2 Kudo类型的锥束重建算法
  • 4.3.3 两类锥束重建公式的分析
  • 4.4 三维Radon逆变换分解的超短扫描轨迹锥束重建算法
  • 4.4.1 三维Radon逆变换的分解
  • 4.4.2 Radon空间内部区域的重建公式
  • 4.4.3 Radon空间边界区域的重建公式
  • 4.4.4 转角增量因子对阴影区域重建公式的修正
  • 4.5 实验结果与分析
  • 4.6 本章小结
  • 5 圆弧轨迹Katsevich类型的锥束重建算法
  • 5.1 引言
  • 5.2 Katsevich锥束重建理论
  • 5.3 圆弧轨迹锥束投影几何及其Radon数据分布
  • 5.4 解析法构造因子的确定及其对应的锥束重建公式
  • 5.5 基于几何图形法圆弧轨迹构造因子的确定
  • 5.5.1 几何图形法的基本原理
  • 5.5.2 Radon平面与圆弧轨迹交点个数的分析
  • 5.5.3 过圆弧端点的临界面与检测器交线的分类
  • 5.5.4 过圆弧端点的临界面上构造因子的确定
  • 5.6 几何图形法对应的重建公式推导
  • 5.6.1 投影数据的偏导数
  • 5.6.2 偏导数据的滤波及重建公式
  • 5.6.3 截断投影数据的重建
  • 5.7 实验结果与分析
  • 5.7.1 重建无截断投影数据的实验比较
  • 5.7.2 重建截断投影数据的实验比较
  • 5.8 本章小结
  • 6 圆弧加直线轨迹Katsevich类型的锥束重建算法
  • 6.1 引言
  • 6.2 圆弧加直线轨迹锥束投影几何及Radon数据完备性分析
  • 6.2.1 锥束投影几何
  • 6.2.2 Radon数据完备性分析
  • 6.3 Katsevich类型锥束重建算法的执行细节及修正
  • 6.3.1 构造因子的分析及补充
  • 6.3.2 投影数据的偏导数
  • 6.3.3 偏导数据的滤波及滤波线方程
  • 6.3.4 反投影区域及重建公式的修正
  • 6.4 去除轨迹参数偏导数的重建公式
  • 6.4.1 圆弧轨迹去除轨迹参数偏导数的重建公式
  • 6.4.2 直线轨迹去除轨迹参数偏导数的重建公式
  • 6.5 实验结果与分析
  • 6.6 本章小结
  • 7 总结与展望
  • 7.1 全文工作总结
  • 7.2 工作展望
  • 参考文献
  • 附录A 模型参数
  • 附录B 超短扫描轨迹偏导数相关的推导
  • 附录C Radon平面绕投影射线旋转的解析关系
  • 攻读博士学位期间发表学术论文情况
  • 创新点摘要
  • 致谢
  • 相关论文文献

    • [1].DSA介入诊疗中铅屏风的设计及应用[J]. 中国医学装备 2020(01)
    • [2].DSA仿真内镜成像在颈内动脉颅外段狭窄诊治中的作用[J]. 临床神经病学杂志 2019(06)
    • [3].4D-DSA在硬脑膜动静脉瘘诊治中的应用[J]. 中国临床神经外科杂志 2020(03)
    • [4].DSA下导丝引出法在困难性鼻胆管口鼻转换中的临床研究[J]. 中国内镜杂志 2020(05)
    • [5].旋转DSA三维重建技术用于肝癌介入治疗中的效果[J]. 临床医学研究与实践 2020(16)
    • [6].医用诊断数字减影血管造影(DSA)系统X射线辐射源辐射输出的空气比释动能率测量不确定度评定[J]. 信息记录材料 2020(05)
    • [7].研究分析脑血管疾病诊断中应用旋转DSA技术的价值[J]. 影像研究与医学应用 2020(12)
    • [8].DSA仿真内镜成像在颈内动脉颅外段狭窄诊治中的作用[J]. 中国实用神经疾病杂志 2019(17)
    • [9].DSA引导下微球囊压迫技术精准治疗三叉神经痛[J]. 口腔医学 2020(08)
    • [10].DSA步进技术在下肢动脉硬化闭塞症介入诊疗中的应用[J]. 影像研究与医学应用 2020(20)
    • [11].探讨DSA在急性缺血性脑血管病介入治疗中的应用价值[J]. 当代医学 2019(20)
    • [12].DSA在急性缺血性脑血管病介入检查及治疗中的应用价值探讨[J]. 临床医药文献电子杂志 2019(71)
    • [13].术中DSA在颅内复杂动脉瘤夹闭术中的应用[J]. 中国临床神经外科杂志 2017(02)
    • [14].DSA在急性缺血性脑血管病介入治疗中的应用价值[J]. 内蒙古医学杂志 2016(11)
    • [15].某医院DSA机房建设项目放射防护控制效果评价[J]. 中国辐射卫生 2017(01)
    • [16].DSA型受电弓的故障处理与维护[J]. 科技创新与应用 2017(08)
    • [17].DSA在颅内复杂动脉瘤介入杂交手术中的应用价值[J]. 微创医学 2017(02)
    • [18].对脑梗死DSA术后患者脑过度灌注综合征的预防体会[J]. 当代护士(上旬刊) 2017(06)
    • [19].某医院直线加速器和DSA应用项目辐射防护评价[J]. 环境与发展 2017(05)
    • [20].DSA在急性缺血性脑血管病介入治疗的临床应用价值[J]. 中国民康医学 2017(13)
    • [21].旋转DSA技术在冠状动脉慢性完全闭塞性病变诊治中的应用价值[J]. 延安大学学报(医学科学版) 2017(03)
    • [22].DSA引导下颈神经根阻滞治疗神经根型颈椎病的临床疗效[J]. 中外医疗 2017(24)
    • [23].DSA在急性缺血性脑血管病介入检查及治疗中的应用[J]. 中国医药指南 2017(28)
    • [24].脑梗死患者中颈内动脉起始段狭窄的DSA筛查标准探讨[J]. 中国医药科学 2016(05)
    • [25].动脉性消化道出血的DSA介入治疗分析[J]. 现代消化及介入诊疗 2016(02)
    • [26].探讨DSA在急性缺血性脑血管病介入检查及治疗中的应用[J]. 中国卫生标准管理 2014(22)
    • [27].颈内动脉狭窄DSA手术的护理[J]. 中国农村卫生 2015(01)
    • [28].应激性溃疡大出血DSA表现及介入治疗的临床价值[J]. 河北医学 2015(01)
    • [29].DSA引导下射频热凝术治疗原发性三叉神经痛30例围术期护理[J]. 齐鲁护理杂志 2015(04)
    • [30].DSA下食管支架置入术治疗食管恶性狭窄的临床分析[J]. 世界最新医学信息文摘 2015(07)

    标签:;  ;  ;  ;  ;  

    基于DSA扫描轨迹的锥束重建算法研究
    下载Doc文档

    猜你喜欢