论文摘要
电力系统是一个典型的高维非线性动态系统。随着大型电力系统互联发展,增强了电力系统的复杂性和非线性程度。另一方面,随着电力电子技术的发展和计算机运算能力的提高,越来越多的新技术、新设备和新策略被应用于电力系统的运行控制中。STATCOM作为灵活交流输电系统的一种新设备被广泛地应用到电力系统中,它可以有效地提高系统输电容量,增强系统稳定,改善电能质量,但同时也增加了系统的复杂程度和控制难度。所以稳定性分析是电力系统规划和运行中重要的任务之一。为提高电力系统运行的稳定性,除应对电网进行合理的规划、建设采取必要的措施外,最主要的就是对相关部件采取有效的控制手段。因此,STATCOM与电力系统励磁的控制设计研究具有十分重要的意义。为了改进和提高电力系统的稳定控制技术,人们对系统模型及控制方法进行了大量的研究工作。发电机励磁控制一直以来都是提高电力系统稳定性最经济最有效的手段之一,但大部分控制励磁系统都是基于电力系统在某个运行点的线性化模型而进行设计的线性控制规律。在电力系统的实际运行中,由于存在着各种不确定性因素,而且干扰对控制系统的影响很大,应该考虑降低干扰对系统的影响,使干扰输入对系统输出的影响足够小,这也就是电力系统的鲁棒非线性控制问题。电力系统的鲁棒非线性控制对提高稳定性,改善系统动态能有着十分重要的意义。另外,耗散系统原理研究的不断发展对分析电力系统提供了新的视角和方法,因此有必要基于耗散系统原理研究成果,完全考虑系统的非线性特性,设计电力系统的非线性控制器。本文针对具有STATCOM的发电机励磁系统,利用非线性控制的基本原理和控制方法,结合电力系统的特点,针对各种系统装置,建立并推导系统的合适数学模型。然后采用无源协调控制思想和反步法,研究设计了STATCOM和发电机励磁的协调控制器,有效提高了系统的暂态稳定性能。最后介绍了微分代数理论的基本概念,并将前面的研究成果推广到非线性微分代数系统,用它来描述复杂电力系统动态特性。将单机模型推广到多机电力系统,尝试建立能够反映系统拓扑特性的不确定结构保持电力系统模型。