本文主要研究内容
作者孔丽娟(2019)在《Effectiveness of Surface Coatings Against Intensified Sewage Corrosion of Concrete》一文中研究指出:Three different kinds of coatings were coated on the concrete surface, and the changes in appearance, surface roughness, microstructure and components of coatings in artificial sewage were investigated. In addition, the strength, micrograph, mineral compositions and pore structure of concrete specimens after removing coatings were also studied. The results show that epoxy coal tar pitch coating(ECTPC) has the best effect of protecting concrete from the sewage corrosion. After being immersed in sewage for 90 days, the compressive strength of concrete coated with ECTPC is still as high as that of specimen immersed in water, and the cement paste has a high CH content and dense structure with low porosity, which mainly accounts for its excellent barrier property and certain antibacterial function. Cement-based bactericidal coating(CBC) also has good effectiveness to sewage corrosion of concrete. The strength and microstructure of concrete coated with CBC in sewage are still significantly superior to those of uncoated concrete. Although cement-based capillary crystalline waterproofing coating(CCCWC) is a good waterproof material, it is not suitable for the corrosion resistance of concrete in sewage. After 2 months corrosion, almost all of the CH crystals in coating reacted with the metabolic acid substance by microbes. Therefore, the strength and pore structure of concrete coated with CCCWC are only slightly superior to those of uncoated concrete. Overall, the protective effect of cement-based inorganic coatings is relatively poor.
Abstract
Three different kinds of coatings were coated on the concrete surface, and the changes in appearance, surface roughness, microstructure and components of coatings in artificial sewage were investigated. In addition, the strength, micrograph, mineral compositions and pore structure of concrete specimens after removing coatings were also studied. The results show that epoxy coal tar pitch coating(ECTPC) has the best effect of protecting concrete from the sewage corrosion. After being immersed in sewage for 90 days, the compressive strength of concrete coated with ECTPC is still as high as that of specimen immersed in water, and the cement paste has a high CH content and dense structure with low porosity, which mainly accounts for its excellent barrier property and certain antibacterial function. Cement-based bactericidal coating(CBC) also has good effectiveness to sewage corrosion of concrete. The strength and microstructure of concrete coated with CBC in sewage are still significantly superior to those of uncoated concrete. Although cement-based capillary crystalline waterproofing coating(CCCWC) is a good waterproof material, it is not suitable for the corrosion resistance of concrete in sewage. After 2 months corrosion, almost all of the CH crystals in coating reacted with the metabolic acid substance by microbes. Therefore, the strength and pore structure of concrete coated with CCCWC are only slightly superior to those of uncoated concrete. Overall, the protective effect of cement-based inorganic coatings is relatively poor.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Wuhan University of Technology(Materials Science)的孔丽娟,发表于刊物Journal of Wuhan University of Technology(Materials Science)2019年05期论文,是一篇关于,Journal of Wuhan University of Technology(Materials Science)2019年05期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Wuhan University of Technology(Materials Science)2019年05期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。
标签:Journal of Wuhan University of Technology(Materials Science)2019年05期论文;