论文摘要
格点系统和带变号位势的二阶微分方程是两类重要的微分方程模型。本文讨论耦合格点系统和二阶变号位势方程的周期解和相关动力行为,主要考虑:带阻尼的次线性耦合受迫格点系统的周期解;二阶超线性变号位势方程的周期解和周期碰撞解;二阶超线性变号位势碰撞方程的全局定义解以及混沌行为。在第一章,阐述了课题的背景以及意义,介绍了格点系统和变号位势二阶微分方程解的动力行为的研究情况与本文的主要研究成果。在第二章,考虑一类粒子间相邻耦合的非保守受迫格点系统,其中粒子间的耦合力关于粒子间的距离是次线性增长的。当系统是有限维时,我们通过寻找同伦方程组的周期解的先验界和运用拓扑度的方法证明了周期解存在的充分必要条件;当系统是无穷维时,我们在有限维结果的基础之上运用一些极限讨论得到了无穷多个周期解的存在性。在第三章,考虑一类非保守超线性变号位势方程的周期解。首先,我们对所谓“拉伸-扭转映射”给出一个新的拓扑不动点定理。其次,针对权函数取负值和非负值两种情况对解的动力行为分别进行分析。我们得出,当权函数取负值时解表现出快速拉伸性和部分解的不可延拓性等特点,当权函数取非负值时解具有弹性性质并且大范数解具有快速扭转性。最后,利用上述解在相平面上的定性性质,我们构造一系列适当的拓扑四边形使得在这些四边形上Poincare映射是拉伸-扭转映射,从而运用拉伸-扭转不动点定理可以证明无穷多个周期解的存在性。在第四章,运用相平面定性分析的方法,我们考虑一类超线性受迫变号位势方程的碰撞周期解的存在性和多解性。首先,通过使用一个截断函数来构造一个新碰撞方程,使得新方程在原点附近的动力行为是简单的。这样,在原点附近,我们可以避免讨论由于强迫项的出现而导致的异常复杂的解的动态行为。同时,在适当大的圆周外面,新方程与原方程是等价的。其次,通过引进新的坐标变换我们把右半平面上的碰撞问题转化到整个平面上,且将碰撞系统转化为与之等价的新的系统,通过证明新的系统连续周期解的存在性来得出碰撞问题周期解的存在性。最后,运用第三章中的方法,通过对新系统的解在新的相平面上的定性分析,我们构造一系列适当的拓扑四边形并且运用拉伸-扭转不动点定理证明了无穷多个2π-周期解的存在性,从而得到原系统的无穷多个2π-周期碰撞解的存在性。在第五章,考虑了一类超线性变号位势弹性碰撞振子的全局解和混沌动力行为,其中它的权函数在定义区间上可以无穷次变号。首先,利用第四章的坐标变换,我们将碰撞问题转化到全平面上进行讨论。其次,运用相平面定性分析方法,对权函数有限次变号的情况进行讨论,得到了在q有限次变号区间上的解的存在性,并且这些解在q不同符号的区间上有相应的碰撞次数,这个结论在后面全局定义解的讨论中是重要的。随后,通过对解在权函数取不同符号的区间上的动力行为的细致分析,同时运用了一些简单拓扑知识,我们证明了:对于任意一个事先适当选取的无穷维向量,都存在一个全局定义的碰撞解,使得在每一个权函数取非负数或取负数的区间上,解发生碰撞的次数都与这个向量对应位置上的分量相同。最后,当碰撞系统是周期系统时,利用前面所得到的全局定义解的结果,我们还证明了系统具有混沌动力行为的特征。
论文目录
相关论文文献
- [1].一类耦合梁方程组在非线性边界条件下解的长时间动力行为(英文)[J]. 应用数学 2020(01)
- [2].大跨度铁路曲线刚构桥静力及动力行为分析[J]. 四川建筑 2017(04)
- [3].船体梁在水下近距爆炸作用下反直观动力行为的相似分析[J]. 应用数学和力学 2011(12)
- [4].具有同宿轨的系统在扰动下的分岔及混沌行为[J]. 四川师范大学学报(自然科学版) 2014(01)
- [5].液滴在非均匀润湿表面上的动力行为[J]. 上海交通大学学报 2014(02)
- [6].某刚架拱桥动力行为有限元模拟分析及试验验证[J]. 江西科学 2016(01)
- [7].深水锚在海床中复杂动力行为的分析模型[J]. 海洋工程 2015(06)
- [8].斜拉桥自由振动特性分析[J]. 低温建筑技术 2009(01)
- [9].非自治随机Sine-Gordon方程组的拉回动力行为[J]. 西南大学学报(自然科学版) 2018(02)
- [10].人致人行桥侧向振动中时滞影响的研究[J]. 土木工程与管理学报 2013(01)
- [11].基于季节时温的沥青路面温荷耦合动力性能分析[J]. 华南理工大学学报(自然科学版) 2017(04)
- [12].轨道梁动力行为对跨座式单轨车辆走行性能的影响[J]. 铁道科学与工程学报 2018(12)
- [13].基于时滞思想的一类非线性弹性杆结构动力行为的研究[J]. 动力学与控制学报 2016(04)
- [14].大跨度公铁两用钢桁梁斜拉桥结构地震响应特征研究[J]. 桥梁建设 2015(02)
- [15].非饱和土半空间中单桩竖向振动特性研究[J]. 岩土工程学报 2013(07)
- [16].Kopel系统的分岔研究[J]. 山东交通学院学报 2009(02)
- [17].级配碎石填料大三轴试验及累积塑性应变预测模型[J]. 岩土力学 2020(09)
- [18].既有损伤混凝土梁桥车桥耦动力分析[J]. 山西建筑 2016(13)
- [19].多涡卷jerk电路混沌系统的分析与滑模控制[J]. 西安科技大学学报 2009(06)
- [20].地震作用下双曲面球型减隔震支座在铁路简支梁桥中的动力行为[J]. 土木工程学报 2019(06)
- [21].4维Lorenz-stenflo系统的逆控制[J]. 常熟理工学院学报 2012(02)
- [22].工程材料非连续屈服特性的作用及其模拟分析[J]. 水利学报 2012(S1)
- [23].三维水污染模型的稳态解[J]. 哈尔滨师范大学自然科学学报 2011(05)
- [24].初始裂缝对重力坝地震响应特性的影响[J]. 天津大学学报(自然科学与工程技术版) 2016(04)
- [25].一类三维混沌系统的自适应同步[J]. 陕西科技大学学报(自然科学版) 2008(04)
标签:格点系统论文; 变号位势的二阶方程论文; 碰撞振子论文; 拓扑度论文; 不动点定理论文; 周期解论文; 混沌动力行为论文;