本文主要研究内容
作者张宁宁,张玉娟,杨宇,张平,葛昌纯(2019)在《First-principles study of structural, mechanical, and electronic properties of W alloying with Zr》一文中研究指出:The structural, mechanical and electronic properties of W1-xZrx(x=0.0625, 0.125, 0.1875, 0.25, 0.5) are systematically investigated by means of first-principles calculation. The total-energy calculations demonstrate that the W–Zr binary substitutional solid solution remaining bcc structure can be formed at an atom level. In addition, the derived bulk modulus(B), shear modulus(G), Young’s modulus(E) for each of W–Zr alloys decrease gradually with the increase of Zr concentration, suggesting that W alloying with higher Zr concentration becomes softer than pure W metal. Based on the mechanical characteristic B/G ratio, Poisson’s ratio υ and Cauchy pressure C, all W1-xZrx alloys are regarded as ductile materials. The ductility for each of those materials is improved with the increase of Zr concentration. The calculated density of states indicates that the ductility of W1-xZrx is due to the fact that the bonding in the alloy becomes more metallic through increasing the Zr concentration in tungsten. These results provide incontrovertible evidence for the fact that Zr has a significant influence on the properties of W.
Abstract
The structural, mechanical and electronic properties of W1-xZrx(x=0.0625, 0.125, 0.1875, 0.25, 0.5) are systematically investigated by means of first-principles calculation. The total-energy calculations demonstrate that the W–Zr binary substitutional solid solution remaining bcc structure can be formed at an atom level. In addition, the derived bulk modulus(B), shear modulus(G), Young’s modulus(E) for each of W–Zr alloys decrease gradually with the increase of Zr concentration, suggesting that W alloying with higher Zr concentration becomes softer than pure W metal. Based on the mechanical characteristic B/G ratio, Poisson’s ratio υ and Cauchy pressure C, all W1-xZrx alloys are regarded as ductile materials. The ductility for each of those materials is improved with the increase of Zr concentration. The calculated density of states indicates that the ductility of W1-xZrx is due to the fact that the bonding in the alloy becomes more metallic through increasing the Zr concentration in tungsten. These results provide incontrovertible evidence for the fact that Zr has a significant influence on the properties of W.
论文参考文献
论文详细介绍
论文作者分别是来自Chinese Physics B的张宁宁,张玉娟,杨宇,张平,葛昌纯,发表于刊物Chinese Physics B2019年04期论文,是一篇关于,Chinese Physics B2019年04期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Chinese Physics B2019年04期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。