非牛顿流与格点系统的渐近行为

非牛顿流与格点系统的渐近行为

论文摘要

本博士学位论文主要分两部分。前一部分(第一章至第六章)研究非牛顿流方程解的渐近行为。后一部分(第七章至第十一章)研究格点系统的解的渐近行为。流体力学现象普遍存在于物理学、生物学、大气与海洋科学及航空工业等领域。非牛顿流体力学是近代流体力学的一个重要分支。论文前一部分主要研究数学家Ladyzhenskaya提出的一个非牛顿流模型,主要证明该非牛顿流轨道吸引子及一致吸引子、后拉吸引子的存在性和正则性。同时证明了具有快速振动外力项的非牛顿流一致吸引子的稳定性及具有时滞项的非牛顿流后拉吸引子的存在性与正则性。离散与连续是客观世界物质运动对立统一的两种形式。格点系统是某些变量离散化的时空系统,包括耦合的常微分方程组、耦合映射格点和细胞自动机。在某些情况下,格点系统表现为偏微分方程的空间变量离散化近似。在论文后一部分中,我们先证明时滞格点系统整体吸引子、核截面与一致吸引子存在的充分必要条件,并将结果应用到时滞格点反应扩散方程,证明了整体吸引子的存在性,上半连续性和极限行为。接着考虑了两个典型数学物理方程(Klein-Gordon-Schr(?)dinger方程和长波-短波共振方程)在无穷格点上紧致核截面的存在性、上半连续性和Kolmogorovε-熵的上界估计。然后考虑了非经典抛物方程和复Ginzburg-Landau方程在无穷格点上的整体吸引子的极限行为。之后,我们证明了Hilbert空间中紧集具有有限分形维数的准则,并将结果应用到具体的格点系统中。最后,我们考虑随机格点系统,证明了随机格点动力系统存在随机整体吸引子的充分条件,并将该条件应用到随机格点sine-Gordon方程上。论文具体安排如下:第一章首先概述无穷维动力系统理论的背景,介绍无穷维动力系统相关的概念和主要结果。然后概述非牛顿流的现实背景及当前国际上的研究情况,并概述本文在这一方面所做的工作。最后,我们介绍无穷格点系统的起源与当前国际上的研究概况,并概述本文在这方面所做的主要研究工作。第二章考虑自治情形非牛顿流的轨道吸引子的存在性。在该方程的解的唯一性没有得到证明的情况下,我们借助作用在轨道空间中的自然平移半群,证明紧致吸收集的存在性,从而证明轨道吸引子的存在性,同时得到了广义整体吸引子的存在性。第三章考虑非自治非牛顿流的一致吸引子的存在性。我们先通过一些细致的先验估计证明H空间中一致吸引子的存在性,然后应用谱分析的技巧证明V空间中一致吸引子的存在性。最后我们应用一致Gronwall不等式和方程自身的特点证明H空间中一致吸引子与V空间中一致吸引子是相等的,从而得到了一致吸引子的正则性。该正则性揭示了该非牛顿流方程的解的渐近光滑效应:解(具有H2正则性)会最终变得比初值(具有L2正则性)更光滑。第四章研究非自治非牛顿流解的后拉渐近行为。首先,我们通过细致的先验估计证明H空间中后拉吸引子的存在性。然后应用椭圆算子的谱分析的技巧来证明V空间中后拉吸引子的存在性。与第三章相似,我们应用一致Gronwall不等式证明H空间中的后拉吸引子与V空间中的后拉吸引子实际上是相等的。该正则性揭示了该非牛顿流方程解的后拉渐近光滑效应:解在相关环的后拉作用下会变得比初值更光滑。第五章考虑具有快速振动(关于时间)外力项的的非牛顿流。在适当的假设下,我们证明振动方程与平均方程的一致吸引子之间在Hausdorff距离意义下的逼近关系。第六章考虑具有时滞的非牛顿流方程。我们证明不同空间上的过程后拉吸引子的存在性。然后应用能量方法证明了这两组后拉吸引子之间的关系,并通过得到关系证明后拉吸引子的正则性。在第七章,我们先证明时滞格点系统存在整体吸引子的充分必要条件。然后应用该结果证明时滞反应扩散方程在无穷格点上整体吸引子的存在性。接着我们考虑时滞区间长度趋近于零时整体吸引子的奇异极限行为。最后,我们说明对于紧致核截面和一致吸引子有相似的结果成立。第八章证明Klein-Gordon-Schr(?)dinger方程和长波-短波共振方程在无穷格点上紧致核截面的存在性、上半连续性以及Kolmogorovε-熵的估计。第九章考虑非经典抛物方程和复Ginzburg-Landau方程在无穷格点上的整体吸引子的奇异(关于方程中的参数)极限行为。我们通过证明解对系统中参数的连续依赖性证明了整体吸引子关于参数的连续依赖性。在第十章,我们先证明Hilbert空间中紧集具有有限分形维数的一个准则,然后把该准则应用到非自治一阶无穷格点系统得到了有限维核截面的存在性。第十一章考虑随机格点系统。我们先证明了随机格点动力系统存在随机整体吸引子的充分条件。然后把得到的结果应用到随机格点sine-Gordon方程上得到随机整体吸引子的存在性,并证明该随机整体吸引子的Kolmogorovε-熵的估计。

论文目录

  • 摘要
  • Abstract
  • 第一章 序言
  • §1.1 无穷维动力系统与基本概念
  • §1.2 非牛顿流与本文相关工作
  • §1.3 格点系统与本文相关工作
  • §1.4 常用符号和基本知识
  • 第二章 非牛顿流的轨道吸引子
  • §2.1 主要结果
  • §2.2 准备工作
  • §2.3 吸收集的存在性
  • §2.4 轨道与整体吸引子
  • 第三章 非自治非牛顿流的一致吸引子
  • §3.1 引言与主要结果
  • §3.2 V空间中的一致吸引子
  • §3.2.1 先验估计与一致有界吸收集
  • §3.2.2 一致ω-极限紧与弱连续
  • §3.2.3 主要定理的证明与推论
  • §3.3 H空间中的一致吸引子
  • 第四章 非自治非牛顿流的后拉吸引子
  • §4.1 引言
  • §4.2 预备知识
  • 2正则性的后拉吸引子'>§4.3 具H2正则性的后拉吸引子
  • 2正则性的后拉吸引子'>§4.4 具L2正则性的后拉吸引子
  • §4.5 后拉吸引子的正则性
  • §4.6 结论与说明
  • 第五章 具快速振动外力项的非牛顿流
  • §5.1 主要结果
  • §5.2 有界一致吸收集
  • §5.3 H空间中的Hausdorff距离估计
  • §5.4 V空间中Hausdorff距离估计
  • §5.5 两点说明
  • 第六章 时滞非牛顿流的渐近行为
  • §6.1 引言
  • §6.2 解的存在唯一性
  • 2后拉吸引子'>§6.3 L2后拉吸引子
  • v2中后拉吸引子的存在性'>§6.4 Ev2中后拉吸引子的存在性
  • §6.5 后拉吸引子的正则性
  • 第七章 时滞格点系统
  • §7.1 引言
  • §7.2 一阶时滞格点系统的整体吸引子
  • §7.2.1 充分必要条件
  • §7.2.2 时滞格点反应扩散方程的整体吸引子
  • §7.2.3 整体吸引子的上半连续性
  • §7.2.4 结论与说明
  • §7.3 一阶时滞格点系统的核截面与一致吸引子
  • 第八章 典型数学物理方程在无穷格点上的紧致核截面
  • §8.1 引言
  • §8.2 非自治Klein-Gordon-Schrodinger方程在无穷格点上的紧致核截面
  • §8.2.1 解的存在唯一性与有界性
  • §8.2.2 后拉渐近零
  • §8.2.3 紧致核截面的存在性与Kolmogorov ε-熵
  • §8.2.4 紧致核截面的上半连续性
  • §8.3 非自治长波-短波共振方程在无穷格点上的紧致核截面
  • §8.3.1 解的存在唯一性与有界性
  • §8.3.2 过程的后拉渐近零性
  • §8.3.3 Kolmogorov ε-熵的上界
  • §8.3.4 核截面的上半连续性
  • 第九章 某些无穷格点系统的极限行为
  • §9.1 非经典抛物方程在无穷格点上整体吸引子的极限行为
  • §9.1.1 预备知识
  • §9.1.2 整体吸引子的存在性
  • §9.1.3 整体吸引子的上半连续性
  • §9.2 Ginzburg-Landau方程在无穷格点上整体吸引子的极限行为
  • §9.2.1 解的唯一存在性与有界性
  • §9.2.2 整体吸引子的存在性
  • §9.2.3 整体吸引子的极限行为
  • 第十章 有限分形维数准则及其在格点系统中的应用
  • §10.1 引言
  • §10.2 Hilbert空间中的有限分形维数准则
  • §10.3 无穷格点系统的有限维核截面
  • 第十一章 随机格点动力系统
  • §11.1 基本概念
  • §11.2 随机格点动力系统存在随机整体吸引子的充分条件
  • §11.3 随机格点sine-Gordon方程的随机整体吸引子
  • 参考文献
  • 论文创新成果小结
  • 作者在攻读博士学位期间公开发表和完成的论文
  • 致谢
  • 相关论文文献

    • [1].国家级格点实况分析产品在江苏地区的适用性评估分析[J]. 气象 2019(09)
    • [2].格点计算器[J]. 数理化解题研究 2020(09)
    • [3].与“格点多边形”有关的两道证明题(初三)[J]. 数理天地(初中版) 2018(09)
    • [4].“数格点、找规律”探究活动方案[J]. 初中生世界 2014(46)
    • [5].“数格点算面积”活动设计方案[J]. 初中生世界 2015(05)
    • [6].与格点相关的数学中考题[J]. 科学大众(科学教育) 2010(03)
    • [7].上海精细化格点预报业务进展与思考[J]. 气象科技进展 2016(04)
    • [8].与格点相关的数学中考题[J]. 数学学习与研究 2010(10)
    • [9].格点多边形的面积[J]. 中学数学教学参考 2015(Z2)
    • [10].基于WebGIS技术的精细化格点预报系统设计与实现[J]. 大气科学研究与应用 2014(02)
    • [11].格点与面积[J]. 语数外学习(初中版七年级) 2008(Z1)
    • [12].格点中点的一个结果[J]. 数学教学研究 2011(08)
    • [13].校正后的降雨格点预报在洪水预报中的应用[J]. 水电能源科学 2010(04)
    • [14].“小格点”彰显“大格局”——2017年中考数学“格点”试题的价值探析[J]. 中学数学 2017(22)
    • [15].一道中考格点题解法探求[J]. 中学教研(数学) 2014(06)
    • [16].格点多边形简介[J]. 中学生数学 2018(22)
    • [17].对格点图形对称问题的探究和拓展[J]. 初中生世界 2009(Z2)
    • [18].一种格点预报数据分布式服务系统的设计与实现[J]. 计算机应用与软件 2018(08)
    • [19].陕西省精细化气象格点预报数据环境的设计与实现[J]. 陕西气象 2017(04)
    • [20].从感性到理性,体现数学的实验味——以数学实验“数格点 算面积”教学设计为例[J]. 中学数学杂志 2016(10)
    • [21].气象格点数据在线可视化平台的设计与开发[J]. 计算机工程与应用 2019(18)
    • [22].宁夏精细化气象要素格点预报进展与思考[J]. 宁夏工程技术 2018(02)
    • [23].格点图形面积的公式求法[J]. 小学生导刊(高年级) 2011(11)
    • [24].几种格点化温度滚动订正预报方案对比研究[J]. 气象 2019(07)
    • [25].中国区域高分辨率温度实况融合格点分析产品质量评估[J]. 高原山地气象研究 2019(03)
    • [26].一个简单的格点温度预报订正方法[J]. 气象 2017(12)
    • [27].基于动态格点的压缩感知目标计数和定位算法[J]. 计算机科学 2018(01)
    • [28].二维颗粒堆积中压力问题的格点系统模型[J]. 物理学报 2017(20)
    • [29].注重活动过程 积累活动经验——综合实践活动课《数格点算面积》实录片断与思考[J]. 初中数学教与学 2016(06)
    • [30].加权空间一阶耗散格点动力系统的吸引子[J]. 河南科技大学学报(自然科学版) 2012(04)

    标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

    非牛顿流与格点系统的渐近行为
    下载Doc文档

    猜你喜欢