混凝土外加剂对水泥石干燥收缩的影响及其机理研究

混凝土外加剂对水泥石干燥收缩的影响及其机理研究

论文摘要

水泥混凝土的收缩开裂是影响其耐久性的重要因素。矿物外加剂和化学外加剂大幅度地提高了高性能混凝土的施工性能和物理力学性能,成为其中不可或缺的两个必要组分;但另一方面,由于这两个组分加入到混凝土中,使得其变形开裂的影响因素更加复杂。若能从根本上研究清楚两者对水泥石乃至混凝土的干燥收缩影响规律及其机理,提出解决混凝土收缩开裂的技术措施,对混凝土干燥收缩开裂问题达到标本兼治具有重要的科学理论价值和工程实践意义。本论文采用一种快速测试水泥石干燥收缩的碟片试验方法,研究了硅灰、粉煤灰、磨细矿渣等矿物外加剂和萘系高效减水剂、聚羧酸高效减水剂等对标准养护的水泥石干燥收缩的影响。针对大体积混凝土和蒸养制品等,设计了早期热处理的试验方法,即第1天为60℃养护、以后一直保持标准养护,并对该条件下的水泥石的干缩变化规律进行了研究。利用压汞法和氮吸附法测试了水泥石的孔结构,从而对干缩的微观本质进行了探索性研究。论文取得的主要研究结论如下:①矿物外加剂对水泥石干燥收缩的影响与其品种、掺量及水胶比、水化程度有关。大掺量粉煤灰、大掺量矿渣均能降低水泥石的干燥收缩;硅灰对水泥石干燥收缩的影响不显著,低水胶比、掺量为5.0%~7.5%时能减小水泥石的干缩。②化学外加剂能增加水泥石的干燥收缩,其影响程度与其品种、掺量及水胶比、水化程度有关。一般情况下,掺入高效减水剂增加了水泥石的干燥收缩,且掺量越大,干燥收缩越大。因此,工程实践中为了尽量降低干燥收缩,在保证其他性能不受影响的情况下应尽量减小高效减水剂的掺量。③原始配比相同,不同龄期的水泥石的干燥收缩不同。不含外加剂的水泥石,早期干燥收缩最大。含硅灰的水泥石,低水胶比时,仍然是早期干燥收缩最大,但大水胶比时,龄期越长的水泥石的干燥收缩越大;对含粉煤灰和矿渣的水泥石除早期干缩较大外,还存在一个干缩最大的最不利龄期,约在1月左右。含高效减水剂的水泥石,仍然是早期干燥收缩最大。对使用聚羧酸系高效减水剂的水泥石,干燥收缩还存在一个后期(约2月后)增长过程。④原始配比相同,早期热处理对水泥石的干燥收缩有影响。早期热处理会降低不含外加剂的水泥石的干缩。含硅灰的水泥石,早期热处理仍降低干缩;含粉煤灰的水泥石和含矿渣的水泥石,早期热处理仍降低干缩,但受龄期和掺量干扰。含高效减水剂的水泥石,早期热处理仍降低干缩。对使用聚羧酸系高效减水剂的水泥石,早期热处理会增加后期(约2月后)干缩。⑤压汞法和氮吸附测孔法测试水泥石的孔结构显示,矿物外加剂增加水泥石的总孔隙率,小于32nm的毛细孔和大于10μm的大孔均有所增加;含化学外加剂的水泥石的总孔隙率降低,20~50nm的毛细孔显著减少,大于10μm的大孔略有增加。以上孔结构试验结果能够解释测试的水泥石的干燥收缩性能。以上试验结果对混凝土外加剂在工程实践中的应用具有一定的指导意义。

论文目录

  • 摘要
  • ABSTRACT
  • 1 绪论
  • 1.1 混凝土外加剂的发展历史及现状
  • 1.2 混凝土的体积稳定性
  • 1.2.1 混凝土体积稳定性的概念
  • 1.2.2 混凝土的体积变形种类
  • 1.3 水泥石干缩及其研究现状
  • 1.3.1 干缩过程
  • 1.3.2 干缩机理
  • 1.3.3 影响干缩的因素
  • 1.3.4 干缩试验方法
  • 1.4 研究目的和意义
  • 1.5 研究内容
  • 2 试验原材料及试验方法
  • 2.1 原材料
  • 2.1.1 水泥
  • 2.1.2 矿物外加剂
  • 2.1.3 化学外加剂
  • 2.2 试验方法
  • 2.2.1 干缩试验方法
  • 2.2.2 孔结构测定
  • 3 矿物外加剂对水泥石干燥收缩的影响
  • 3.1 矿物外加剂的减缩效应
  • 3.1.1 硅灰的减缩作用
  • 3.1.2 粉煤灰的减缩作用
  • 3.1.3 矿渣的减缩作用
  • 3.1.4 小结
  • 3.2 水泥石在不同龄期下的干燥收缩及其比较
  • 3.2.1 不含矿物外加剂的水泥石在不同龄期下的干燥收缩
  • 3.2.2 含硅灰的水泥石在不同龄期下的干燥收缩
  • 3.2.3 含粉煤灰的水泥石在不同龄期下的干燥收缩
  • 3.2.4 含矿渣的水泥石在不同龄期下的干燥收缩
  • 3.2.5 小结
  • 3.3 早期热处理对水泥石干燥收缩的影响
  • 3.3.1 含硅灰的水泥石
  • 3.3.2 含粉煤灰的水泥石
  • 3.3.3 含矿渣的水泥石
  • 3.3.4 小结
  • 3.4 矿物外加剂对水泥石孔结构的影响
  • 3.5 本章小结
  • 4 化学外加剂对水泥石干燥收缩的影响
  • 4.1 高效减水剂的作用机理
  • 4.2 不同掺量高效减水剂对水泥石干燥收缩的影响
  • 4.2.1 萘系高效减水剂的影响
  • 4.2.2 聚羧酸高效减水剂的影响
  • 4.2.3 小结
  • 4.3 化学外加剂对不同龄期水泥石干燥收缩的影响
  • 4.3.1 萘系高效减水剂的影响
  • 4.3.2 聚羧酸高效减水剂的影响
  • 4.3.3 小结
  • 4.4 早期热处理对水泥石干燥收缩的影响
  • 4.4.1 掺萘系高效减水剂的水泥石
  • 4.4.2 掺聚羧酸高效减水剂的水泥石
  • 4.4.3 小结
  • 4.5 化学外加剂对水泥石孔结构的影响
  • 4.6 本章小结
  • 5 水泥石干燥收缩机理探讨
  • 6 结论和展望
  • 6.1 结论
  • 6.2 展望
  • 致谢
  • 参考文献
  • 附录
  • A. 作者攻读硕士学位期间发表的论文
  • B. 作者攻读硕士学位期间参与的科研项目
  • 相关论文文献

    • [1].Population Shrinkage in Resource-dependent Cities in China: Processes, Patterns and Drivers[J]. Chinese Geographical Science 2020(01)
    • [2].Quantitative Analysis of Natural and Human Factors of Oasis Change in the Tail of Shiyang River over the Past 60 Years[J]. Acta Geologica Sinica(English Edition) 2020(03)
    • [3].Influencing Factors of Reheating Shrinkage Rate of Glass Substrate on LTPS Process[J]. Journal of Wuhan University of Technology(Materials Science) 2020(04)
    • [4].Relationship between granitic soil particle-size distribution and shrinkage properties based on multifractal method[J]. Pedosphere 2020(06)
    • [5].Salinity effects on soil shrinkage characteristic curves of fine-grained geomaterials[J]. Journal of Rock Mechanics and Geotechnical Engineering 2019(01)
    • [6].Finite element modeling of macrosegregation coupled with shrinkage cavity in steel ingots using arbitrary Lagrangian-Eulerian model[J]. China Foundry 2019(05)
    • [7].Effects of hot isostatic pressing temperature on casting shrinkage densification and microstructure of Ti6Al4V alloy[J]. China Foundry 2017(05)
    • [8].Shrinkage behavior of self-compacting concrete[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering) 2012(06)
    • [9].Factors affecting the shrinkage of fly ash geopolymers[J]. International Journal of Minerals Metallurgy and Materials 2011(01)
    • [10].Impact analysis of casting parts considering shrinkage cavity defect[J]. China Foundry 2011(01)
    • [11].Experimental Study of Shrinkage Displacements of Points on Injection Molded Parts[J]. Chinese Journal of Mechanical Engineering 2010(05)
    • [12].Application of digital image correlation to full-field measurement of shrinkage strain of dental composites[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering) 2013(01)
    • [13].Importance of aging to dehydration shrinkage of human dentin[J]. Applied Mathematics and Mechanics(English Edition) 2012(03)
    • [14].Influence of shrinkage-reducing admixture on drying shrinkage and mechanical properties of high-performance concrete[J]. Water Science and Engineering 2008(04)
    • [15].Characteristics of the Lower Yellow River channel shrinkage and its discriminant parameters[J]. Science China(Technological Sciences) 2010(05)
    • [16].Relationship Between Autogenous Deformation and Internal Relative Humidity of High-strength Expansive Concrete[J]. Journal of Wuhan University of Technology(Materials Science Edition) 2010(03)
    • [17].Numerical simulation of central shrinkage crack formation in a 234-t steel ingot[J]. China Foundry 2017(05)
    • [18].Shrinkage and Compressive Strength of Concrete with Superabsorbent Polymers[J]. Journal of Wuhan University of Technology(Materials Science Edition) 2009(S1)
    • [19].Key Strengths Behind Zhongwang 's Success[J]. 纺织服装周刊 2008(34)
    • [20].Influence of Superplasticizer Type and Dosage on Early-age Drying Shrinkage of Cement Paste with Consideration of Pore Size Distribution and Water Loss[J]. Journal of Wuhan University of Technology(Materials Science) 2020(04)
    • [21].APPITA2015年第1期中英文摘要[J]. 中国造纸 2016(01)
    • [22].Shrinkage Reducing Measures for Engineering Cementitious Composites[J]. Journal of Wuhan University of Technology(Materials Science Edition) 2008(06)
    • [23].Shrinkage Characteristics of Lime Concretion Black Soil as Affected by Biochar Amendment[J]. Pedosphere 2018(05)
    • [24].Influences of Reinforcement on Differential Drying Shrinkage of Concrete[J]. Journal of Wuhan University of Technology(Materials Science Edition) 2012(03)
    • [25].Influences of Shrinkage,Creep,and Temperature on the Load Distributions in Reinforced Concrete Buildings During Construction[J]. Tsinghua Science and Technology 2009(06)
    • [26].Correlation between Porosity and Fracture Mechanism in High Pressure Die Casting of AM60B Alloy[J]. Journal of Materials Science & Technology 2016(01)
    • [27].Surface modification of polyolefin separators for lithium ion batteries to reduce thermal shrinkage without thickness increase[J]. Journal of Energy Chemistry 2015(02)
    • [28].Experimental Research on Early-Age Property of High-Performance Concrete Column by Embedded Sensors[J]. Journal of Southwest Jiaotong University(English Edition) 2008(03)
    • [29].The coalbed methane transport model and its application in the presence of matrix shrinkage[J]. Science in China(Series E:Technological Sciences) 2008(07)
    • [30].Fracture property identification method based on shrinkage factor particle swarm optimization[J]. Global Geology 2015(04)

    标签:;  ;  ;  ;  ;  

    混凝土外加剂对水泥石干燥收缩的影响及其机理研究
    下载Doc文档

    猜你喜欢