“四基”,数学新课标的一个亮点

“四基”,数学新课标的一个亮点

王利强广东河源市新市区东环路北河源中学实验学校517000

新课程目标明确提出“四基”,除了我们熟悉的“双基”——基础知识和基本技能外,还增加了“基本思想和基本活动经验”。这是新课程标准的一大亮点,标志着数学教学进入了科学发展的轨道,体现着数学教学的价值与本质。

一、“四基”内涵

将双基拓展为四基,首先体现了对于数学课程价值的全面认识,学生通过数学学习不仅仅获得必需的知识和技能,还要在学习过程中积累经验、获得数学发展和处理问题的思想。新增加的双基——基本思想、基本活动经验,特别是基本活动经验更加强调学生的主体体验,体现了以学生为本的基本理念。

1.基本思想

数学基本思想主要是指数学抽象的思想、数学推理的思想和数学模型的思想。之所以把这些称之为数学基本思想,是因为它们贯穿于数学的学习过程,是对数学本质理解的集中体现。数学基本思想应当成为学习掌握各部分数学内容的魂,成为形成数学概念、建立数学知识体系、思考和解决数学问题的主线。

2.基本活动经验

基本活动经验是在学生参与数学学习的活动中积累起来的。如果把数学基础知识和基本技能的学习看作是显性的话,那么基本活动经验的积累就具有隐性的特征。

首先,数学基本活动经验的积累要和过程性目标建立联系。目标有两类,一类是结果性目标,一类是过程性目标。一般来说,结果性目标是指向基础知识与基本技能的。过程性目标更多地指向数学基本思想和基本活动经验,而数学基本活动经验主要是过程性目标的体现。

其次,数学基本活动经验的积累依靠丰富多样的数学活动的支撑。这里的数学活动是指伴随学生相应的数学知识学习而设计的观察、试验、猜测、验证、推理与交流、抽象概括、数据搜集与处理、问题反思与建构等。数学活动的设计与相应的知识技能有关,但其目的不只是为了完成数学知识技能的学习,还是学生数学活动经验积累的重要途径。

第三,数学基本活动经验的积累是一个长期的过程。活动经验要靠积累,积累需要一个过程,不能指望一两次活动就能完成。因此,应当把活动经验的积累看作是一个长远的目标,持续不断地组织学生参与数学探究的过程,逐步形成数学活动经验。

3.“核心概念”的本质

首先,核心概念是全面实现课程目标的需要。以“四基”为核心的课程目标的实现依赖于相应的课程内容。数与代数、图形与几何、统计与概率、综合与实践四个方面的内容,规定了数学课程的范围和具体要求。这些方面的内容与知识技能目标之间的联系是显而易见的,但怎样体现这些内容与其他方面目标之间的关系,这些内容怎样在学生获得数学思想、数学活动经验以及数学思考、解决问题等方面发挥作用,是需要认真思考和设计的问题。核心概念提出的目的之一,就是在具体的课程内容与课程的总体目标之间建立起联系。通过把握这些核心概念,实现数学课程目标。

其次,核心概念体现数学内容的本质。核心概念本质上体现了数学的基本思想,反映了数学内容的本质特征以及数学思维方式。数学内容的四个方面都以10个核心概念中的一个或几个为统领,学生对这些核心概念的体验与把握,是对这些内容的真正理解和掌握的标志。

二、“四基”的目标

总体目标从四个方面具体阐述:知识技能、数学思考、问题解决、情感态度。“这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机整体”,“这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展有着重要的意义”。课程内容的选择、教学方法的设计、教学评价的组织等,都应遵循课程的总体目标,以实现总体目标为指向。《课标》中还专门设计了“综合与实践”的课程内容,强调以问题为载体,让学生在综合运用知识、技能解决问题的实践中获得数学活动经验。在学生积累和获得数学的基本活动经验的过程中,就必然有情感态度与价值观的提升。这样,“四基”就全面体现了《纲要》中“三维目标”的要求。

因此“双基”发展为“四基”是因为:

第一,“双基”仅仅涉及上述三维目标中的一个目标——“知识与技能”。新增加的两条则还涉及三维目标的另外两个目标——“过程与方法”和“情感态度与价值观”。

第二,因为某些教师有时片面地理解“双基”,往往在实施中“以本为本”见物不见人,而教育必须以人为本,新增加的“数学思想”和“活动经验”就直接与人相关,也符合“素质教育”的理念。

第三,因为仅有“双基”还难以培养创新性人才,“双基”只是培养创新性人才的一个基础,但创新性人才不能仅靠熟练掌握已有的知识和技能来培养,获得数学思想和数学活动经验等也十分重要,这就是新增加的两条。

数学思想是数学教学的精髓,是统领课堂教学的主线;数学活动是不可或缺的教学形式与过程。“四基”既然比原来增加了两条,教师在课堂教学的安排上就应该有意识地给数学思想的教学预留适当的时间;但是数学思想的教学不能空洞地进行,一定要以数学知识为载体进行,并且应该注意将数学知识与数学思想融为一体,因势利导,水到渠成,画龙点睛;教师在讲解数学思想时,应该避免“两层皮”,避免生硬牵强,避免长篇大论。在课堂数学活动的时间安排上,大量的应该是教师启发式传授和学生在教师指导下独立思考、自主探究的时间;其他形式的数学活动也应安排适当的时间。

《课标》在“四基”的表述前用了“获得适应社会生活和进一步发展所必需的”这样一个限制性定语,这样,一方面避免了在“四基”的名义下不适当地扩大教学内容,一方面也强调了学生获得数学“四基”的现实意义和长远意义。其现实意义是——学生适应社会生活所必需;其长远意义是——学生进一步发展所必需。

如果数学课程能够使我们的学生获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验,那么培养全面发展的创新性人才就具备了很好的条件。

标签:;  ;  ;  

“四基”,数学新课标的一个亮点
下载Doc文档

猜你喜欢