论文摘要
长江源区是我国高寒生态系统典型区域,独特而脆弱的生态系统和特殊的水文特征,在寒区生态环境、水文循环及气候变化中起着极其重要的作用。生态系统植被净初生产力(NPP)和水分利用效率(WUE)是联系植被生态系统中水分循环和碳循环的重要变量,具有重要的水文学和生态学意义。论文以光能利用率模型为基础,结合MODIS高时间分辨率影像与地面气象资料,应用CASA模型估算长江源区植被净初生产力,根据植被净初生产力和潜在蒸散发,估算长江源区植被水分利用效率。从2000-2005年以时间和空间序列来分析长江源区植被水分利用效率、植被净初生产力,不同植被类型下的植被水分利用效率和植被净初生产力的分布情况,长江源区典型植被年际年内分布特征以及植被水分利用效率和净初生产力的影响因子分析。1、作为计算WUE的重要组成部分,在对长江源区潜在蒸散发模型的选择时,论文利用FAO Penman-Monteith、Priestley-Taylor、Hargreaves和FAO-Radiation模型进行拟合,得出FAO Penman-Monteith>Hargreaves>Priestley-Taylor>FAO-Radiation,FAO Penman-Monteith模型对区域潜在蒸散发拟合效果最好,因此,选取FAO Penman-Monteith模型计算潜在蒸散发并进行了有效检验。2、论文分析了长江源区的生态系统植被净初生产力,研究结果表明:从2000-2005年,年NPP平均值在627.39-713.05 gC/m2·a,NPP总量总体上分布8.77×1013-9.96×1013gC/a。2005年最小,2003年最大,长江源区植被净初生产力变化趋势为2000-2002年和2003-2005两个阶段减少趋势。2002-2003年间年际变化最大,年NPP变化为41.42 gC/m2·a。NPP的年内分配,文中按照春季融化阶段、水分充分阶段、植被枯萎阶段和冬季冬季四阶段进行分析。空间分布上,长江源区通天河下游直门达水文站以上河沿(玉树县、称多县)、叶曲、莫曲、北麓河下游和沱沱河下游属于NPP高值区。NPP高值范围达到700gC/m2·a;NPP次高值出现在色吾曲流域、楚玛尔河下游流域及以东、沱沱河、通天河以南的大部分低海拔区域,NPP值在500-700gC/m2·a;NPP值最低值广泛分布在长江源区的高海拔地区和山脉地区:唐古拉山脉、祖尔肯乌拉山脉、乌兰乌拉山、可可西里山、各布里山、昆仑山、白日咀扎解依山和坑巴饿任山山区和楚玛尔河上游。这些地区NPP值很小,高海拔地区接近0值。长江源区陆地年均NPP的空间分布格局与植被类型和植被群落关系密切,以高寒草甸植被为主的当曲流域、以高寒草原为主的沱沱河、通天河流域和亚高山阔叶落叶灌丛的德曲流域是NPP值分布的高值区,在高海拔地区的无植被地段属于NPP值分布低值区。不同的植被类型的NPP值,以高寒草甸最高,其NPP值年均在682.36gC/m2·a左右;其次为高寒草原,为679.31 gC/m2·a;亚高山常绿阔叶灌丛,为606.79gC/m2·a;依次为亚热带山地针叶林,为601.13gC/m2·a;亚高山落叶阔叶灌丛,为597.78 gC/m2·a;高寒稀疏植被,为577.77 gC/m2·a;高寒垫状植被,为561.98 gC/m2·a;在影响因子方面,NPP值与NDVI、太阳辐射、温度、降雨和地温关系明显。3.分析了长江源区的植被水分利用效率,研究结果表明:2000-2005年长江源区的年WUE的平均值在0.83-1.00gC/mm.m2,2000年最小,2001年最大。2000-2005年6年间年WUE增加了0.10gC/mm.m2,总体变化趋势为小幅度波动增加的态势。2002-2003年间年际变化最大,年WUE变化为0.1gC/mm.m2,在2003-2005年WUE呈下降趋势,年WUE变化率均为-0.04gC/mm.m2。空间分布来看,WUE值分布与NPP值分布相似,只是高值区和低值区更明显分布。通天河下游直门达水文站以上河沿(玉树县、称多县)、叶曲、属于WUE高值区。WUE高值范围大于1gC/mm·m2;WUE次高值分布色吾曲、楚玛尔河下游、北麓河、沱沱河下游、沱沱河、通天河以南的大部分低海拔地区。WUE值在0.7-1.0gC/mm·m2;在沱沱河、通天河河沿以北,色吾河以西地区WUE值小于0.7gC/mm·m2;WUE最低值广泛分布在长江源区的高海拔地区和山脉:唐古拉山脉、祖尔肯乌拉山、可可西里山、昆仑山、坑巴饿任山山区和楚玛尔河上游。WUE接近0值。不同的植被类型的WUE来看,以高寒草甸最高,其WUE值年均在0.95 gC/mm.m2左右,其次为亚高山常绿阔叶灌丛,为0.91 gC/mm.m2;依次为高寒稀疏植被,为0.88gC/mm.m2;亚热带山地针叶林,为0.86 gC/mm.m2;高寒草原为0.86 gC/mm.m2;亚高山落叶阔叶灌丛,为0.85 gC/mm.m2;高寒垫状植被,为0.76 gC/mm.m2。
论文目录
相关论文文献
- [1].三江源植被碳利用率动态变化及其对气候响应[J]. 中国环境科学 2020(01)
- [2].基于MODIS数据的中国西北植被变化分析[J]. 林业科技通讯 2019(12)
- [3].长江流域中上游植被NDVI时空变化及其地形分异效应[J]. 长江流域资源与环境 2020(01)
- [4].西安园林芳香植被调研及改善建议[J]. 陕西农业科学 2020(01)
- [5].河北省植被NDVI变化及其对气象要素的响应[J]. 林业与生态科学 2020(01)
- [6].《中国植被志》:为中国植被登记造册[J]. 植物生态学报 2020(02)
- [7].乌蒙山地区植被时空演变趋势预测[J]. 四川环境 2020(04)
- [8].海岸带植被三种生物性状变化对消浪效果的影响[J]. 中国水运(下半月) 2020(08)
- [9].山东植被灰色动态预测探析[J]. 防护林科技 2020(08)
- [10].我国科学家发布植被病虫害遥感监测与预测系统[J]. 农村新技术 2020(10)
- [11].植被保持水土效益研究[J]. 智能城市 2019(07)
- [12].2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报 2019(06)
- [13].典型喀斯特区植被变化及其与气象因子的关系——以广西百色市为例[J]. 沙漠与绿洲气象 2019(05)
- [14].1982—2013年准噶尔盆地植被长势变化分析[J]. 林业资源管理 2016(05)
- [15].中国北方地区秋季植被变化及对气候变化的响应研究[J]. 测绘与空间地理信息 2016(11)
- [16].汉江流域植被净初级生产力时空格局及成因[J]. 生态学报 2016(23)
- [17].一种利用野地瓜修复矿区植被与土壤的方法初探[J]. 中国农学通报 2017(01)
- [18].城市冠层植被大气环境特性大涡模拟[J]. 科技导报 2017(03)
- [19].植被微波遥感下粒子的散射特性研究[J]. 电子世界 2016(23)
- [20].西藏自治区植被与气候变化的关系[J]. 山地学报 2017(01)
- [21].生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性[J]. 生态学报 2017(12)
- [22].2013年黑龙江省洪水对植被影响评估[J]. 灾害学 2017(04)
- [23].植被在湿地恢复与重建中的应用[J]. 科学技术创新 2017(20)
- [24].我国三北地区植被变化的动因分析[J]. 生态学报 2017(15)
- [25].利用国产开源卫星影像分析广州市天河区植被现状[J]. 广东园林 2017(04)
- [26].基于遥感数据的黔南州植被净初级生产力分析[J]. 江西农业学报 2017(10)
- [27].遥感反演植被含氮量研究进展[J]. 生态学报 2017(18)
- [28].植被保持水土的基本规律和总结[J]. 黑龙江科技信息 2015(24)
- [29].梭梭树:沙漠中的植被之王[J]. 科学之友(上半月) 2019(09)
- [30].“生物圈与植被”教学设计(鲁教版新教材)[J]. 地理教育 2020(09)
标签:长江源区论文; 植被净初生产力论文; 植被水分利用效率论文;