测度链上p-Laplacian边值问题与Hamiltonian系统的周期解

测度链上p-Laplacian边值问题与Hamiltonian系统的周期解

论文摘要

测度链上动力方程理论不但可以统一微分方程和差分方程、更好地洞察二者之间的本质差异,而且还可以更精确地描述那些有时在连续时间出现而有时在离散时间出现的现象。所以,研究测度链上动力方程既有理论意义,又有现实基础。类似于微分方程和差分方程,非线性项变号的边值问题同样是一个困难且重要的问题。为此,我们研究了测度链上非线性项变号的p-Laplacian奇异多点边值问题正解的存在性。借助于上下解方法和Schauder不动点定理,获得了在广义Dirichlet,广义Robin及非线性Robin边值条件下非线性项变号的p-Laplacian奇异多点边值问题正解的一些新的存在性法则。对于非奇异边值问题,我们首先考虑了测度链T上的p-Laplacian多点广义Neumann边值问题正解的存在性。利用Krasnosel’skii不动点定理、广义的AveryHenderson不动点定理以及Avery-Peterson不动点理论。获得了至少有一个、两个、三个和任意奇数个正解的新的充分条件,建立了p-Laplacian多点广义Neumann边值问题正解的存在性理论。为了进一步考虑解的特性,我们借助于对称技巧和五泛函不动点定理,给出了测度链T上一类p-Laplacian两点边值问题至少有三个正对称解的存在性条件。此外,利用伪对称技巧和五泛函不动点定理,得到了一类p-Laplacian三点边值问题三个正伪对称解的存在性准则。我们知道,变分理论是非线性分析中非常有力的工具,能否在测度链分析中发挥类似的作用,是人们非常关注的问题。然而,正如美国数学评论员Ahlbrandt在评论(MR1962542)中指出,目前所使用的Hilger积分仅仅依赖于原函数,而所谓的“△积分”和“▽积分”又分别是一类Darboux积分和修改了的Riemann和的极限。这些积分的缺陷严重阻碍了测度链上变分理论进一步发展,从而使目前的积分理论很难将变分理论应用到测度链分析理论中去。鉴于这种理论背景,Rynne(JMAA,2007)引入了一种测度链T上的新积分。我们发现这种新积分克服了Hilger积分的缺陷,使得变分理论应用到测度链分析理论成为可能。因此,我们借助于临界点理论,研究了两类二阶Hamiltonian系统,并得到了周期解的存在性准则。这可能是第一次用临界点理论来研究测度链上二阶Hamiltonian系统周期解存在性的问题。

论文目录

  • 摘要
  • Abstract
  • 第一章 引言
  • §1.1 问题产生的背景、本文的结构安排和主要工作
  • §1.2 有关测度链的基本知识
  • §1.3 本文的主要工具
  • 第二章 非线性项变号的p-Laplacian奇异多点边值问题正解的存在性
  • §2.1 非线性项变号的奇异多点广义Robin边值问题
  • §2.1.1 存在性结果
  • §2.1.2 α和β的构建
  • §2.1.3 例子
  • §2.2 非线性项变号的奇异多点广义Dirichlet边值问题
  • §2.2.1 存在性结果
  • §2.2.2 α和β的建立
  • §2.2.3 例子
  • §2.3 非线性项变号的奇异多点Robin非线性边值问题
  • §2.3.1 存在性结果
  • §2.3.2 α和β的建立
  • §2.3.3 例子
  • 第三章 p-Laplacian边值问题的对称解和伪对称解
  • §3.1 一类两点边值问题正对称解的存在性
  • §3.1.1 主要结果
  • §3.1.2 例子
  • §3.2 一类三点边值问题正伪对称解的存在性
  • §3.2.1 引言及主要结果
  • §3.2.2 例子
  • 第四章 p-Laplacian多点广义Neumann边值问题正解的存在性
  • §4.1 引言及引理
  • §4.2 一个或两个解的存在性
  • 0=1和i=1的情形'>§4.2.1 i0=1和i=1的情形
  • 0=0和i=0的情形'>§4.2.2 i0=0和i=0的情形
  • 0=1且i=0或者i0=0且i=1的情形'>§4.2.3 i0=1且i=0或者i0=0且i=1的情形
  • 0=0且i=2或者i0=2且i=0的情形'>§4.2.4 i0=0且i=2或者i0=2且i=0的情形
  • §4.3 多个解的存在性
  • §4.3.1 主要结果
  • §4.3.2 例子
  • 第五章 测度链上Hamiltonian系统的周期解
  • §5.1 一些引理
  • §5.2 能量变号的Hamiltonian系统的周期解
  • §5.2.1 主要结果
  • §5.2.2 例子
  • §5.3 非自治二阶Hamiltonian系统
  • §5.3.1 主要结果
  • §5.3.2 例子
  • 参考文献
  • 在学期间完成的学术论文
  • 致谢
  • 相关论文文献

    • [1].Multiplicity of Periodic Solutions for Second Order Hamiltonian Systems with Asymptotically Quadratic Conditions[J]. Acta Mathematica Sinica 2020(01)
    • [2].Brake Orbits of First Order Convex Hamiltonian Systems with Particular Anisotropic Growth[J]. Acta Mathematica Sinica 2020(02)
    • [3].Energy Variance in Decoherence[J]. Chinese Physics Letters 2020(03)
    • [4].Multiple brake orbits of even Hamiltonian systems on torus[J]. Science China(Mathematics) 2020(07)
    • [5].A Renormalized-Hamiltonian-Flow Approach to Eigenenergies and Eigenfunctions[J]. Communications in Theoretical Physics 2019(07)
    • [6].Experimental Hamiltonian Learning of an 11-Qubit Solid-State Quantum Spin Register[J]. Chinese Physics Letters 2019(10)
    • [7].Robust Adaptive Control for Robotic Systems With Input Time-Varying Delay Using Hamiltonian Method[J]. IEEE/CAA Journal of Automatica Sinica 2018(04)
    • [8].Experimental quantum Hamiltonian identification from measurement time traces[J]. Science Bulletin 2017(12)
    • [9].An efficient broadband coupled-mode model using the Hamiltonian method for modal solutions[J]. Science China(Physics,Mechanics & Astronomy) 2017(09)
    • [10].On the Number of Limit Cycles in Small Perturbations of a Piecewise Linear Hamiltonian System with a Heteroclinic Loop[J]. Chinese Annals of Mathematics(Series B) 2016(02)
    • [11].An Alternative Adiabatic Quantum Algorithm for the Hamiltonian Cycle Problem[J]. Communications in Theoretical Physics 2015(05)
    • [12].The Study of Minimal Period Estimates for Brake Orbits of Autonomous Subquadratic Hamiltonian Systems[J]. Acta Mathematica Sinica 2015(10)
    • [13].A Direct Method of Hamiltonian Structure[J]. Communications in Theoretical Physics 2011(07)
    • [14].Blow-up criteria and periodic peakons for a two-component extension of the μ-version modified Camassa-Holm equation[J]. Communications in Theoretical Physics 2020(03)
    • [15].直径为2图中的长圈[J]. 数学的实践与认识 2020(10)
    • [16].一类超二次二阶Hamiltonian系统同宿解的一个注记(英文)[J]. 仲恺农业工程学院学报 2017(04)
    • [17].Symplectic Self-adjointness of Infinite Dimensional Hamiltonian Operators[J]. Acta Mathematica Sinica 2018(09)
    • [18].一类四次Hamiltonian函数周期环域的环性[J]. 数学进展 2017(02)
    • [19].Existence of Periodic Solutions of Sublinear Hamiltonian Systems[J]. Acta Mathematica Sinica 2016(05)
    • [20].Infinitely Many Periodic Solutions for a Class of Second-order Hamiltonian Systems[J]. Acta Mathematicae Applicatae Sinica 2016(01)
    • [21].Spectral Inclusion Properties of Unbounded Hamiltonian Operators[J]. Chinese Annals of Mathematics(Series B) 2015(02)
    • [22].Homoclinic Orbits for First Order Hamiltonian Systems with Some Twist Conditions[J]. Acta Mathematica Sinica 2015(11)
    • [23].On Invertible Nonnegative Hamiltonian Operator Matrices[J]. Acta Mathematica Sinica(English Series) 2014(10)
    • [24].Energy-shaping for Hamiltonian control systems with time delay[J]. Journal of Control Theory and Applications 2013(03)
    • [25].Stability for a class of nonlinear time-delay systems via Hamiltonian functional method[J]. Science China(Information Sciences) 2012(05)
    • [26].Existence of Homoclinic Solution for a Class of Hamiltonian Systems[J]. 数学研究及应用 2012(01)
    • [27].A Family of Adaptive H_∞ Controllers with Full Information for Dissipative Hamiltonian Systems[J]. International Journal of Automation & Computing 2011(02)
    • [28].Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms[J]. Science China(Mathematics) 2011(12)
    • [29].二阶离散Hamiltonian系统的周期解[J]. 山西大学学报(自然科学版) 2010(01)
    • [30].On Feasibility of Variable Separation Method Based on Hamiltonian System for a Class of Plate Bending Equations[J]. Communications in Theoretical Physics 2010(03)

    标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

    测度链上p-Laplacian边值问题与Hamiltonian系统的周期解
    下载Doc文档

    猜你喜欢