不锈钢表面高性能纳米防护涂层研究

不锈钢表面高性能纳米防护涂层研究

论文摘要

不锈钢是一种常见的抗腐蚀材料,在国民经济建设中发挥着重要作用。然而在实际使用中,由于受各种环境因素的影响,其使用寿命往往比预期短得多。这不仅造成了安全隐患,而且还因为提前更换钢材造成极大的资源、能源浪费。涂层防护是提高不锈钢抗腐蚀、抗污能力的一种简便、有效的方法,也是将不锈钢推向高端应用领域的途径之一。涂层不锈钢不仅在大飞机、高速铁路机车、探月等重大工程中发挥积极作用,而且在家电、汽车、厨具、电梯等日常生活中也有广泛应用。在涂层不锈钢生产技术中,传统化学电镀法不但工艺复杂、能耗高、成本高,而且生产过程中会产生大量有毒致癌物质,欧盟“汽车寿命终结条令”(2000/53/EC)和“化学品注册、评估、授权和限制制度”(COM(03)644(01))已明令禁止使用该方法。因此,开发新型、高效、环保的防护涂层已经成为国内涂层不锈钢产品推向国际市场亟待解决的关键技术难题。本文以表面有机改性纳米SiO2颗粒为填料,以丙烯酸-环氧复合树脂为基料,分别通过共混和原位聚合两种工艺在430不锈钢表面制备了纳米SiO2-丙烯酸-环氧复合涂层,系统研究了涂层的抗腐蚀性能及其作用机理。本文还通过循环伏安法分别在H2C2O4、H2SO4和HNO3三种质子酸溶液中合成导电聚苯胺(PANI)涂层用于430不锈钢的表面防护,系统研究了质子酸种类刘PANI涂层的形貌、抗腐蚀性能和抗腐蚀机理的影响。获得的主要结论有:1.硅烷偶联剂3-甲基丙烯酰氧丙基三甲氧基硅烷(γ-MPS)提高了纳米SiO2在有机溶剂中的分散性。采用γ-MPS改性SiO2颗粒制备的SiO2-丙烯酸-环氧复合涂层的防护效率(99.72%)显著高于用未改性纳米SiO2颗粒制备的涂层(70.27%);经过200 h盐雾试验后,含未改性纳米SiO2的复合涂层沿划痕发生分层,引起分层的主要原因是涂层内纳米颗粒团聚造成的缺陷(如团聚、气泡)以及较弱的涂层附着力;而利用改性纳米SiO2制备的复合涂层200 h不分层,即便经过500 h也仅观察到极少部分出现分层,这种抗腐蚀性的增强主要归因于改性纳米Si02与不锈钢在界面处实现了Fe-O-Si共价键结合。2.原位聚合法制备的SiO2-丙烯酸-环氧复合涂层的耐中性盐雾时间超过1000 h,抗腐蚀性能优于共混法涂层。这是因为原位聚合从结构上改善了纳米SiO2在有机高分子树脂中的分散均匀度,充分发挥了纳米粒子对抗腐蚀性的增强作用。3.不锈钢表面SiO2-丙烯酸-环氧复合涂层的失效起源于涂层内部不均匀的缺陷。氧浓差腐蚀电池和H+自催化作用加速了这些缺陷处不锈钢的腐蚀。腐蚀产物削弱了涂层与基底之间的结合,最终导致涂层失效。4.通过循环伏安法在H2C2O4、H2SO4和HNO3中合成的PANI涂层提高了430不锈钢的抗腐蚀性能,三种涂层的防护效率由高到低分别为HNO3->H2SO4->H2C2O4-PANI;其中,HNO3-PANI涂层在电聚合过程中的生长速率较小,结构较光滑、致密,与基底附着力较好。5.在H2C2O4-PANI/不锈钢体系中,涂层本身的物理阻隔对其抗腐蚀性能起主导作用;尽管HNO3-PANI和H2SO4-PANI也有一定的物理阻隔作用,但在SS和PANI界面处因催化作用形成的氧化物钝化层是其获得优异抗腐蚀性能的主要原因。

论文目录

  • 摘要
  • Abstract
  • 第一章 绪论
  • 1.1 不锈钢概述
  • 1.1.1 不锈钢的分类
  • 1.1.2 不锈钢的特性与应用
  • 1.2 不锈钢的钝性和腐蚀类型
  • 1.2.1 不锈钢的钝性
  • 1.2.2 不锈钢的腐蚀类型
  • 1.3 不锈钢的涂层防护
  • 1.3.1 金属涂层
  • 1.3.2 无机非金属涂层
  • 1.3.3 传统聚合物涂层
  • 1.3.4 有机-无机复合涂层
  • 1.3.5 导电聚合物涂层
  • 1.4 本论文的研究思路和内容
  • 参考文献
  • 2和TiO2纳米颗粒的合成及其表面改性'>第二章 SiO2和TiO2纳米颗粒的合成及其表面改性
  • 2颗粒的合成及其表面改性'>2.1 纳米SiO2颗粒的合成及其表面改性
  • 2.1.1 实验原料
  • 2.1.2 实验过程
  • 2.1.3 性能表征
  • 2.1.4 结果与讨论
  • 2颗粒的合成及其表面改性'>2.2 纳米TiO2颗粒的合成及其表面改性
  • 2.2.1 实验原料
  • 2.2.2 实验过程
  • 2.2.3 性能表征
  • 2.2.4 结果与讨论
  • 2.3 本章小结
  • 参考文献
  • 2-丙烯酸-环氧复合涂层的制备与表征'>第三章 纳米SiO2-丙烯酸-环氧复合涂层的制备与表征
  • 2-丙烯酸-环氧复合涂层'>3.1 共混法制备纳米SiO2-丙烯酸-环氧复合涂层
  • 3.1.1 实验原料
  • 3.1.2 实验过程
  • 3.1.3 性能表征
  • 3.1.4 结果与讨论
  • 2-丙烯酸-环氧复合涂层'>3.2 原位聚合法制备纳米SiO2-丙烯酸-环氧复合涂层
  • 3.2.1 实验原料
  • 3.2.2 实验过程
  • 3.2.3 性能表征
  • 3.2.4 结果与讨论
  • 3.3 本章小结
  • 参考文献
  • 第四章 电聚合制备导电聚苯胺防护涂层
  • 4.1 实验原料
  • 4.2 实验过程
  • 4.3 性能表征
  • 4.4 结果与讨论
  • 4.4.1 质子酸种类对PANI涂层合成与性能的影响
  • 4.4.2 PANI涂层在不锈钢表面的防腐蚀机理
  • 4.5 本章小结
  • 参考文献
  • 第五章 结论与展望
  • 5.1 结论
  • 5.2 展望
  • 攻读博士期间发表论文与研究成果
  • 致谢
  • 相关论文文献

    • [1].中科院长春应化所:发现多功能诊疗纳米颗粒[J]. 中国粉体工业 2018(06)
    • [2].纳米,最熟悉的“陌生人”[J]. 中国粉体工业 2017(05)
    • [3].纳米线形锂离子电池正极材料的研究进展[J]. 现代化工 2019(12)
    • [4].纳米颗粒药物研发态势报告[J]. 高科技与产业化 2019(11)
    • [5].Staphylococcus saprophyticus JJ-1协同所合成的钯纳米颗粒还原邻氯硝基苯[J]. 云南大学学报(自然科学版) 2020(01)
    • [6].氟化锶纳米板的高压相变行为研究[J]. 吉林师范大学学报(自然科学版) 2020(01)
    • [7].微(纳米)塑料对淡水生物的毒性效应[J]. 吉林师范大学学报(自然科学版) 2020(01)
    • [8].纳米绿色喷墨版的印刷适性[J]. 印刷工业 2019(06)
    • [9].纳米凝胶复合物[J]. 乙醛醋酸化工 2019(12)
    • [10].十氢十硼酸双四乙基铵/纳米铝复合物的制备及其性能[J]. 科学技术与工程 2019(36)
    • [11].细胞膜涂层的仿生纳米颗粒在癌症治疗中的研究进展[J]. 沈阳药科大学学报 2020(01)
    • [12].纳米酶的发展态势与优先领域分析[J]. 中国科学:化学 2019(12)
    • [13].稀土纳米晶用于近红外区活体成像和传感研究进展[J]. 化学学报 2019(12)
    • [14].纳米细菌在骨关节疾病中的研究进展[J]. 吉林医学 2020(01)
    • [15].纳米酶和铁蛋白新特性的发现和应用[J]. 自然杂志 2020(01)
    • [16].纳米酶:疾病治疗新选择[J]. 中国科学:生命科学 2020(03)
    • [17].氧化石墨烯纳米剪裁方法[J]. 发光学报 2020(03)
    • [18].薄层二维纳米颗粒增效泡沫制备及机理分析[J]. 中国科技论文 2019(12)
    • [19].纳米TiO_2基催化剂在环保功能路面应用的研究进展[J]. 中国材料进展 2020(01)
    • [20].铁蛋白纳米笼的研究进展[J]. 中国新药杂志 2020(02)
    • [21].不锈钢表面双重纳米结构的构建及疏水性能研究[J]. 生物化工 2020(01)
    • [22].基于溶解度法的纳米镉、铅、银硫化物的热力学性质研究[J]. 济南大学学报(自然科学版) 2020(02)
    • [23].农药领域中新兴技术——纳米农药及制剂[J]. 农药市场信息 2020(03)
    • [24].纳米TiO_2光催化涂料的研究进展[J]. 山东化工 2020(01)
    • [25].纳米颗粒对含石蜡玻璃窗光热特性影响[J]. 当代化工 2020(01)
    • [26].交流电热流对导电岛纳米电极介电组装的影响[J]. 西安交通大学学报 2020(02)
    • [27].我国纳米科技产业发展现状研究——基于技术维度视角[J]. 产业与科技论坛 2020(01)
    • [28].Al_2O_3@Y_3Al_5O_(12)纳米短纤维对铝合金基复合材料的增强作用[J]. 复合材料学报 2020(02)
    • [29].表面纳米轴向光子的最新进展[J]. 光学与光电技术 2020(01)
    • [30].中国科学院大学地球与行星科学学院教授琚宜文:践履笃实纳米地质情 创新不息科技强国梦[J]. 中国高新科技 2020(02)

    标签:;  ;  ;  ;  ;  

    不锈钢表面高性能纳米防护涂层研究
    下载Doc文档

    猜你喜欢