GaN基外延材料缺陷与应变分析及缺陷抑制方法研究

GaN基外延材料缺陷与应变分析及缺陷抑制方法研究

论文摘要

GaN作为第三代(宽禁带)半导体,正得到日趋广泛的应用,但是由于缺少实用的同质衬底,导致依靠异质外延生长的III族氮化物材料具有很高的缺陷密度,晶体质量不高,器件应用受到了不良的影响。所以,材料缺陷对光学电学性质的具体影响和机制,以及缺陷尤其是位错密度的降低方法一直都是学术界关心的热点。本文从缺陷性质分析与缺陷抑制方法两方面谋篇。首先研究了帽层引入的势垒层应变以及失配位错对二维电子气输运特性的影响;然后研究了近来广泛受到关注的非极性面GaN中主要缺陷的表征,及其与各向异性应变之间的关系;最后在实际生长中,使用了同质外延和创新性的缺陷选择腐蚀的复合外延方法,有效降低了位错密度。本文的主要工作与结论如下:1.通过不同种类材料中帽层结构的对比,得出通过帽层结构能够调节势垒层的应变状态与位错密度进而影响二维电子气输运性能的结论。相比于没有帽层的AlGaN/GaN异质结构,GaN帽层能够使AlGaN势垒层应变弛豫变小,从而改善二维电子气的电学特性;而AlN帽层会使AlGaN势垒层应变弛豫更为严重,使得材料输运特性恶化。2.建立了一种快速无损测定非极性GaN外延膜中堆垛层错相对密度的有效方法,并对不同生长方法得到的非极性a面GaN样品进行了深入分析。研究表明,在a面GaN中各向异性的应变能够通过堆垛层错得到部分释放;另一方面,首次发现了在非极性GaN中掺杂型缺陷会引入静液压应变。3.搭建了一套使用熔融氢氧化钾与热磷酸的缺陷选择性腐蚀系统。通过改变腐蚀时间与温度,确定了不同目的下的最优腐蚀条件,并对熔融氢氧化钾与热磷酸腐蚀效应进行了对比分析。4.利用同质外延方法,得到了位错密度很低的AlGaN/GaN异质结构,电学分析表明,其二维电子气迁移率较异质外延的同样结构中有所提高。另外,在上述缺陷选择腐蚀的基础上,通过腐蚀后GaN底板的原位SiNx掩膜横向外延过生长与AlGaN/GaN腐蚀结构的再生长,得到了很好的位错降低效果。

论文目录

  • 摘要
  • Abstract
  • 第一章 引言
  • 1.1 GaN 基材料特性与发展
  • 1.2 半导体中的缺陷
  • 1.3 GaN 基器件应用及缺陷的影响
  • 1.3.1 氮化物电子器件
  • 1.3.2 氮化物光电器件
  • 第二章 实验手段
  • 2.1 生长
  • 2.2 X 射线衍射(XRD)
  • 2.2.1 缺陷密度的估算
  • 2.2.2 晶格常数及应力应变的精确计算
  • 2.2.3 三元化合物的组分计算
  • 2.2.4 X 射线镜面反射(X-Ray Reflectivity, XRR)
  • 2.2.5 斜切角(miscut)的确定
  • 2.2.6 薄膜曲率的计算
  • 2.3 光学表征
  • 2.3.1 光致发光谱(Photoluminescence, PL)
  • 2.3.2 拉曼光谱(Raman)
  • 2.4 原子力显微镜(AFM)
  • 2.5 霍尔效应测试(Hall Effect Measurement)
  • 2.6 电子显微镜(Electron Microscope, EM)
  • 2.6.1 透射电子显微镜(Transmission Electron Microscope, TEM)
  • 2.6.2 扫描电子显微镜(Scanning Electron Microscope, SEM)
  • 第三章 AlGaN/GaN 异质结结构中帽层对应变与缺陷的影响
  • 3.1 引言
  • 3.2 实验样品
  • 3.3 分析讨论
  • 3.3.1 不同种类帽层结构对 AlGaN 势垒层特性的影响
  • 3.3.2 二维电子气的输运特性及讨论
  • 3.4 小结
  • 第四章 非极性 a 面 GaN 薄膜中缺陷对应变的影响
  • 4.1 导言
  • 4.2 样品和实验配置
  • 4.3 实验结果和讨论
  • 4.3.1 a 面 GaN 应变的测量
  • 4.3.2 BSF 密度的确定
  • 4.3.3 讨论
  • 4.4 小结
  • 第五章 GaN 二次外延中缺陷抑制方法的研究
  • 5.1 导言
  • 5.2 同质外延
  • 5.2.1 实验
  • 5.2.2 实验结果与讨论
  • 5.3 借助缺陷腐蚀的二次生长
  • 5.3.1 实验配置
  • 5.3.2 腐蚀——结果与分析
  • 5.3.3 生长——实验与结果
  • 5.4 小结与展望
  • 结束语
  • 致谢
  • 参考文献
  • 攻读硕士期间的研究成果和参加的科研项目
  • 相关论文文献

    • [1].Characterization of Interface Charge in NbAlO/AlGaN/GaN MOSHEMT with Different NbAlO Thicknesses[J]. Chinese Physics Letters 2015(01)
    • [2].High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chinese Physics Letters 2015(03)
    • [3].Observation of a Current Plateau in the Transfer Characteristics of InGaN/AlGaN/AlN/GaN Heterojunction Field Effect Transistors[J]. Chinese Physics Letters 2015(12)
    • [4].基于第一性原理的AlGaN合金热电性质研究[J]. 人工晶体学报 2019(12)
    • [5].In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT[J]. Chinese Physics B 2020(04)
    • [6].Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chinese Physics Letters 2020(02)
    • [7].Theoretical analytic model for RESURF AlGaN/GaN HEMTs[J]. Chinese Physics B 2019(02)
    • [8].Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer[J]. Chinese Physics B 2019(04)
    • [9].Method of evaluating interface traps in Al_2O_3/AlGaN/GaN high electron mobility transistors[J]. Chinese Physics B 2019(06)
    • [10].AlGaN/GaN横向肖特基势垒二极管的仿真与制作[J]. 半导体技术 2018(05)
    • [11].Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs[J]. Photonics Research 2017(02)
    • [12].Influence of adatom migration on wrinkling morphologies of AlGaN/GaN micro-pyramids grown by selective MOVPE[J]. Chinese Physics B 2017(06)
    • [13].Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer:Material Growth and Device Fabrication[J]. Chinese Physics Letters 2016(11)
    • [14].Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers[J]. Chinese Physics Letters 2016(06)
    • [15].Fabrication of GaN-Based Heterostructures with an InA1GaN/AlGaN Composite Barrier[J]. Chinese Physics Letters 2016(08)
    • [16].Influence of surface states on deep level transient spectroscopy in AlGaN/GaN heterostructure[J]. Chinese Physics B 2016(06)
    • [17].Influence of the AlGaN barrier thickness on polarization Coulomb field scattering in an AlGaN/AlN/GaN heterostructure field-effect transistor[J]. Chinese Physics B 2015(08)
    • [18].Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer[J]. Chinese Physics B 2013(10)
    • [19].蓝宝石衬底多层AlGaN薄膜透射谱研究[J]. 光学学报 2020(19)
    • [20].AlGaN Channel High Electron Mobility Transistors with an Al_xGa_(1-x)N/GaN Composite Buffer Layer[J]. Chinese Physics Letters 2015(07)
    • [21].Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer[J]. Optoelectronics Letters 2020(04)
    • [22].硅基AlGaN紫外大功率LED外延、芯片与封装的专利分析[J]. 中国照明电器 2019(08)
    • [23].Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors[J]. Chinese Physics B 2017(09)
    • [24].Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs[J]. Chinese Physics B 2017(09)
    • [25].Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al_2O_3Gate Dielectric[J]. Chinese Physics Letters 2016(09)
    • [26].High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions[J]. Chinese Physics Letters 2017(01)
    • [27].Aluminum incorporation efficiencies in A- and C-plane AlGaN grown by MOVPE[J]. Chinese Physics B 2016(04)
    • [28].Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer[J]. Chinese Physics B 2014(03)
    • [29].A GaN AlGaN InGaN last quantum barrier in an InGaN/GaN multiple-quantum-well blue LED[J]. Chinese Physics B 2014(04)
    • [30].An improved EEHEMT model for kink effect on AlGaN/GaN HEMT[J]. Chinese Physics B 2014(08)

    标签:;  ;  ;  ;  

    GaN基外延材料缺陷与应变分析及缺陷抑制方法研究
    下载Doc文档

    猜你喜欢