纳米晶体材料中晶粒生长及变形机理的研究

纳米晶体材料中晶粒生长及变形机理的研究

论文摘要

近年来,纳米材料在越来越多的领域得到应用。因此对纳米材料的制备工艺、变形及破坏机理的研究受到了广泛的关注。大多固体材料都是由晶粒构成的,其或为单晶体或为多晶体。晶粒边界上原子的不规则排列使得材料内部储存的能量很高,因此晶界易成为缺陷的源头。一方面在能量驱动下,晶粒会逐渐长大以减小晶界的面积;另一方面,晶粒的尺寸、分布情况和变形方式与材料性能及其使用寿命密切相关,不同尺寸的晶粒在外载作用下其变形机理不尽相同。因此,深刻地了解和剖析晶粒生长的基本特征和变形机理对于材料设计具有重要的指导意义。针对单相多晶材料中的晶粒生长情况,本文提出了一个理论的生长模型,其中考虑晶粒的生长来自于两方面的作用:系统的平均场效应和邻域的局部效应,即将传统的扩散控制机制和曲率引导机制相结合,并对此模型的求解给出了相应的有限差分格式。计算结果表明,晶粒在生长过程中具有一个尺寸效应,当晶粒尺寸很小时,如纳米级别,生长主要是由扩散作用引起的。当尺寸增大,晶粒生长逐渐变为一个由曲率控制的过程,这与实验观测一致。这两个阶段的生长分别具有自相似的特征。与其它模型的结果相比,基于此模型所预测的晶粒尺寸分布函数与实验结果吻合的更好。在多相材料中(通常以两相为原型),针对其晶粒生长机理和特征的认识尚不完整,且很难导出相应的理论模型,因此晶粒生长过程主要采用模特卡罗方法进行模拟研究。本文通过扩展传统的Q态Potts模型,将其运用到两相不相溶固体材料晶粒生长的研究中。主要考虑了具有不同晶格方向的相同组分的晶格重定向和不同组分之间的扩散作用。蒙特卡罗模拟结果表明两相材料中晶粒尺寸与生长时间满足一个幂指数关系。由于附加相的存在,晶粒生长受到了很大程度的抑制。这时候生长指数为0.16,即为单相生长情况的1/3,这与实验结果相一致。同时研究发现为了控制单相材料生长而添加另一相物质时,附加相的最佳体积百分比约为7%~11%,实验中常用的比例为5%~10%,两者吻合很好。两相材料中晶粒尺寸基本上满足对数正态分布,表明所研究系统中的晶粒属于正常形态的生长模式,且此分布与时间无关。分析结果还显示了晶界能与表面能之比存在一个临界值(~2.6),当实际比值大于临界值时,其中一相材料更趋于形成网状结构附着在另一相的边界上,否则其将更容易以颗粒形式散布在系统中。在对材料微结构的变化,即晶粒生长,有了一定的认识的基础上,本文展开了对具有特定微结构的纳米晶体材料的变形机理研究。基于分子动力学方法,研究了单相单晶铜纳米线的变形机理。对纳米线的弯曲加载模拟结果表明,纳米单晶铜材料的塑性变形主要是由原子在密排面内的滑移所引导。塑性变形过程中所形成的形变孪晶将相互作用和影响,导致原子局部微结构的转化,从而形成两个相连的五折孪晶,这一过程是第一次从计算机模拟的角度观测到。而相连五折孪晶的出现对铜纳米线有很好的增强作用,从而使得供给纳米线塑性变形的位错运动受到抑制。对纳米单相多晶铜材料,同样采用分子动力学方法模拟了其在拉伸载荷作用下的变形机理。数值实验的试件首先用前面所建立的扩展Potts模型结合蒙特卡罗方法模拟获得,这样的系统满足尺寸的对数正态分布,与实验更相符。然后采用单轴拉伸加载,同时控制其它两个垂直方向的应力。模拟结果表明,纳米多晶铜的变形主要存在两种方式,即小晶粒的变形主要是通过晶界滑移和晶粒旋转引导的,而大晶粒的变形则主要是由位错运动控制。此外,研究还发现这两种机理控制着不同的变形阶段,如晶粒旋转主要发生在塑性变形的初期,而塑性变形中后期则主要由位错运动引导。随着系统晶粒平均尺寸的改变,这两种机理所占的比重不尽相同,从而导致了纳米材料与传统粗晶材料的物理力学性能具有较大的差别。此外,研究结果还表明由于外载的作用,系统内部所出现的高应力将导致晶粒的快速生长。本文的研究工作是国家自然科学基金项目(10721062,10640420176,50679013)、长江学者和创新团队发展计划以及国家基础发展规划项目(2005CB321704)资助的一部分。

论文目录

  • 摘要
  • Abstract
  • 1 绪论
  • 1.1 引言
  • 1.2 纳米晶体材料概况
  • 1.3 晶粒生长研究
  • 1.3.1 实验研究结果
  • 1.3.2 理论及数值研究现状
  • 1.4 纳米晶体材料变形机理研究
  • 1.4.1 实验研究结果
  • 1.4.2 数值研究现状
  • 1.5 本论文的主要工作
  • 参考文献
  • 2 单相晶粒生长混合模型
  • 2.1 引言
  • 2.2 生长模型
  • 2.2.1 Hillert平均场模型
  • 2.2.2 Gusak-Tu平均场模型
  • 2.2.3 随机扩散模型
  • 2.2.4 混合模型
  • 2.3 求解算法
  • 2.4 结果及其讨论
  • 2.4.1 晶粒生长动力学及尺度效应
  • 2.4.2 自相似特征
  • 2.5 小结
  • 参考文献
  • 3 两相晶粒生长的蒙特卡罗模拟
  • 3.1 引言
  • 3.2 模拟方法及模型
  • 3.2.1 蒙特卡罗方法
  • 3.2.2 随机数的生成
  • 3.2.3 Q态Potts模型
  • 3.2.4 算法策略
  • 3.3 单相系统晶粒生长
  • 3.4 两相系统晶粒生长
  • 3.4.1 晶相与无定形相共存系统
  • 3.4.2 两相晶粒系统
  • 3.5 讨论
  • 3.5.1 生长动力学
  • 3.5.2 晶粒尺寸分布
  • 3.5.3 抑制作用
  • 3.5.4 能量与微结构之间的关系
  • 3.6 小结
  • 参考文献
  • 4 分子动力学
  • 4.1 引言
  • 4.2 分子动力学的基本思想
  • 4.3 控温控压方法
  • 4.4 势能函数
  • 4.5 统计物理量的定义
  • 4.5.1 总能量
  • 4.5.2 温度
  • 4.5.3 原子应力
  • 4.5.4 径向分布函数
  • 4.6 其它若干概念
  • 4.6.1 周期性边界条件
  • 4.6.2 时间步长的选取
  • 4.6.3 邻域列表算法
  • 4.7 小结
  • 参考文献
  • 5 纳米单晶材料变形机理
  • 5.1 引言
  • 5.2 计算模型
  • 5.3 结果及其讨论
  • 5.3.1 能量与弯曲角度的关系
  • 5.3.2 变形特征
  • 5.3.3 尺寸效应
  • 5.3.4 五折孪晶的形成
  • 5.4 小结
  • 参考文献
  • 6 纳米多晶材料变形机理
  • 6.1 引言
  • 6.2 模型
  • 6.3 结果及讨论
  • 6.3.1 微结构变化
  • 6.3.2 应力应变关系
  • 6.3.3 小晶粒变形
  • 6.3.4 大晶粒变形
  • 6.3.5 两种变形机理的相互影响
  • 6.3.6 Hall-Petch关系
  • 6.3.7 应力导致的晶粒生长
  • 6.4 小结
  • 参考文献
  • 结论
  • 创新点摘要
  • 攻读博士学位期间发表学术论文情况
  • 致谢
  • 相关论文文献

    标签:;  ;  ;  ;  ;  

    纳米晶体材料中晶粒生长及变形机理的研究
    下载Doc文档

    猜你喜欢