汉英形状量词的认知解读

汉英形状量词的认知解读

论文摘要

量词是汉语11大词类中最后划类定名的词类,其早期研究主要集中在确立量词在语法系统中的地位以及量词小类的划分上。汉语量词在发展阶段取得了显著的成绩,研究内容正在得到进一步的深化和延伸,不仅对量词分布特征、语义特征、语法特征和修辞特征进行了解释,同时还借用认知语言学中的相关知识从理论层面进行了诠释。尽管英语中数量的概念主要是通过单复数形式出现,并没有确立量词这一词类,但是像“a bunch of flowers”这样的表量结构已经引起了语言学家的广泛关注,并从功能角度、概念语义角度以及认知角度进行了研究。在本研究中,我们将英语中的表量结构也称之为量词。通过分析汉英量词的研究过程,可以看出从认知角度出发对汉英量词进行研究是一个共同趋势。因此,本文将从认知语言学中的识解理论、隐喻理论和范畴化理论这三个方面对汉英量词中表形状的量词展开考察。本文共分为六章。第一章介绍了本文的研究背景、研究范围和组织结构。第二章介绍了认知语言学中识解理论、隐喻理论和范畴化理论的研究和发展状况。第三章是形状量词的分类,本文从空间角度出发将汉英表形状的量词分为零维量词、一维量词、二维量词和三维量词。通过对比分析发现,量词的空间维度特征可以运用连接意象图式、整体部分意象图式和容器图式进行认知解读。第四章借用隐喻理论对汉英表形状量词的认知机制进行分析,将其分为单意象认知模型和双意象认知模型。单意象认知模型从部分和整体角度对量词选择的认知机制进行阐述,而双意象模型则从相似性和相关性的角度进行解读。第五章探讨了汉英表形状量词中存在的“一物多量”和“一量多物”现象,从识解理论的角度对汉英表形状量词中的“一物多量”现象进行阐述,以及运用隐喻、转喻以及范畴化理论对“一量多物”现象进行解读。第六章为结论。本文在现有研究成果的基础上,借鉴认知语言学中的相关理论对表形状的汉英量词进行重新分类。此外,通过分析汉英表形状量词的相同点,旨在说明英语中量词存在的现实性和必然性,为英语量词词类的确立做一些早期的研究工作,同时也为第二外语习得提供理论上的指导。

论文目录

  • 摘要
  • Abstract
  • 1 Introduction
  • 2 Literature Review
  • 2.1 The Construal Theory and the Image Schema
  • 2.1.1 The Construal Theory
  • 2.1.2 The Image Schema
  • 2.2 The Metaphor Theory
  • 2.3 The Categorization Theory
  • 2.3.1 The Classical View of Categorization
  • 2.3.2 The Prototype Theory
  • 2.4 Corpus for Chinese and English
  • 3 Spatial Representation of Shape-based Classifiers both in Chinese and English
  • 3.1 Spatial Classification of Classifiers both in Chinese and English
  • 3.1.1 The Profiling of the Zero-Dimensional Domain of the Classifiers
  • 3.1.2 The Profiling of the One-Dimensional Domain of the Classifiers
  • 3.1.3 The Profiling of the Two-Dimensional Domain of the Classifiers
  • 3.1.4 The Profiling of the Three-Dimensional Domain of the Classifiers
  • 3.2 Conceptual Representation of the Image Schema
  • 3.2.1 The LINK Image Schema
  • 3.2.2 The PART-WHOLE Image Schema
  • 3.2.3 The CONTAINER Image Schema
  • 4 Cognitive Model of the Classifier Structure
  • 4.1 Single Image Model in the Classifier Structure
  • 4.1.1 Partial Profiling of Entities by the Classifiers
  • 4.1.2 Holistic Profiling of Entities by the Classifiers
  • 4.2 Double Image Model in the Classifier Structure
  • 4.2.1 Similarity in Double Image
  • 4.2.2 Correlation in Double Image
  • 5 The Paradigmatic and Syntagmatic Relation in the Classifier Structure
  • 5.1 The Paradigmatic Relation in the Classifier Structure
  • 5.2 The Syntagmatic Relation in the Classifier Structure
  • 5.2.1 Semantic Features of the Classifier
  • 5.2.2 Categorization of Entities in the Classifier Structure
  • 6 Conclusion
  • Bibliography
  • Academic Achievements
  • Acknowledgements
  • 相关论文文献

    • [1].Learning a graph-based classifier for fault localization[J]. Science China(Information Sciences) 2020(06)
    • [2].Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis[J]. World Journal of Gastroenterology 2020(34)
    • [3].Efficient compressive sensing tracking via mixed classifier decision[J]. Science China(Information Sciences) 2016(07)
    • [4].The modulation recognition based on decision-making mechanism and neural network integrated classifier[J]. High Technology Letters 2013(02)
    • [5].Automatic Classification of Cardiac Arrhythmias Based on Hybrid Features and Decision Tree Algorithm[J]. International Journal of Automation and Computing 2020(04)
    • [6].Face recognition system based on CNN and LBP features for classifier optimization and fusion[J]. The Journal of China Universities of Posts and Telecommunications 2018(01)
    • [7].Construction of unsupervised sentiment classifier on idioms resources[J]. Journal of Central South University 2014(04)
    • [8].Improving naive Bayes classifier by dividing its decision regions[J]. Journal of Zhejiang University-Science C(Computers & Electronics) 2011(08)
    • [9].A multi-class large margin classifier[J]. Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal) 2009(02)
    • [10].Study on the classification of multi-spectral images based on a FSVM multi-class classifier with the binary tree[J]. Optoelectronics Letters 2010(01)
    • [11].An Accurate and Extensible Machine Learning Classifier for Flow-Level Traffic Classification[J]. 中国通信 2018(06)
    • [12].Tracking performance of large margin classifier in automatic modulation classification with a software radio environment[J]. Journal of Systems Engineering and Electronics 2014(05)
    • [13].Evolving Neural Network Using Variable String Genetic Algorithm for Color Infrared Aerial Image Classification[J]. Chinese Geographical Science 2008(02)
    • [14].Research on Remote Sensing Image of Land Cover Classification Based on Multiple Classifier Combination[J]. Wuhan University Journal of Natural Sciences 2011(04)
    • [15].CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION[J]. Journal of Electronics(China) 2009(06)
    • [16].Adversarial Attacks and Defenses in Images,Graphs and Text: A Review[J]. International Journal of Automation and Computing 2020(02)
    • [17].Support vector classifier based on principal component analysis[J]. Journal of Systems Engineering and Electronics 2008(01)
    • [18].Key-Attributes-Based Ensemble Classifier for Customer Churn Prediction[J]. Journal of Electronic Science and Technology 2018(01)
    • [19].Data classification from the inverse n~(th) power gravitation[J]. Science China(Information Sciences) 2012(01)
    • [20].Multiscale classification and its application to process monitoring[J]. Journal of Zhejiang University-Science C(Computer & Electronics) 2010(06)
    • [21].Human Motion Recognition Based on Incremental Learning and Smartphone Sensors[J]. ZTE Communications 2016(S1)
    • [22].Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis[J]. Journal of Central South University 2012(02)
    • [23].Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites[J]. Genomics,Proteomics & Bioinformatics 2018(06)
    • [24].A Novel Tracking-by-Detection Method with Local Binary Pattern and Kalman Filter[J]. Journal of Harbin Institute of Technology(New Series) 2018(03)
    • [25].Empirical Study of Classification Process for Two-stage Turbo Air Classifier in Series[J]. Chinese Journal of Mechanical Engineering 2013(03)
    • [26].An Inception Module CNN Classifiers Fusion Method on Pulmonary Nodule Diagnosis by Signs[J]. Tsinghua Science and Technology 2020(03)
    • [27].A deep learning approach to the classification of 3D CAD models[J]. Journal of Zhejiang University-Science C(Computers & Electronics) 2014(02)
    • [28].RESEARCH AND APPLICATION OF A NEURAL NETWORK CLASSIFIER BASED ON DYNAMIC THRESHOLD[J]. Journal of Electronics(China) 2009(03)
    • [29].Selective Ensemble Learning Method for Belief-Rule-Base Classification System Based on PAES[J]. Big Data Mining and Analytics 2019(04)
    • [30].A Synthesizing Land-cover Classification Method Based on Google Earth Engine: A Case Study in Nzhelele and Levhuvu Catchments, South Africa[J]. Chinese Geographical Science 2020(03)

    标签:;  ;  ;  ;  ;  

    汉英形状量词的认知解读
    下载Doc文档

    猜你喜欢