温度载荷作用下花岗岩力学性质演化及其微观机制研究

温度载荷作用下花岗岩力学性质演化及其微观机制研究

论文摘要

运用先进的实验设备和微观测试技术,对温度载荷作用下花岗岩的力学性质演化及其微观机制进行了系统的研究。从能量角度探讨了花岗岩的热粘弹塑性本构方程和破坏准则。研究成果为核废料的存储、煤与油页岩的现场气化、深部资源开采、地热资源开发、煤层瓦斯的安全抽放和综合利用等重大工程中的岩石热力学问题提供了有益的研究资料。论文主要研究成果和创新点如下:利用带高温装置的MTS810及MTS815伺服试验机对花岗岩进行了25~850℃的实时加温加载实验和25~1200℃加温冷却后再加载的单轴压缩实验。研究表明,随着温度的升高,花岗岩的脆性减弱,延性增强,峰值强度降低,峰后特性显著增强。实时高温作用下花岗岩的力学性能降低,随温度升高呈连续弱化,而降温后再加载所得的岩样力学性能出现突变状态,这与岩样中晶形改变和脆塑性转变密切相关。运用电镜扫描、压汞分析、X衍射分析及声发射等实验手段分析了温度对花岗岩力学性质和行为的影响,探讨了花岗岩在高温下出现脆塑性转换的微观机制。在800℃左右,扫描电镜结果表明花岗岩晶体中出现穿晶裂纹、解理台阶、滑移带和浅表韧窝共存特征,X衍射表明岩样晶体部分出现晶形改变,而声发射实验发现在800℃左右声发射强度降低而持续时间增大,在峰值强度之后,残余塑性变形仍释放出密集的声发射信号,岩样呈现出塑性破坏特征,这与花岗岩的宏观力学性质变化特征相一致。花岗岩破坏方式随温度升高由突发式的脆性破裂逐渐向渐进式的半脆性剪切破坏转化。随温度升高,岩样孔隙率总体增大,孔隙率的阀值温度在800℃左右,但岩样孔隙分布分形维数却反而降低。压汞实验结果表明,在高温作用下,岩样中的热损伤由初始非规则的裂隙结构逐渐向均匀化的孔穴结构转化,非均匀性弱化是导致岩样孔隙分布分形维数降低的根本原因。以西原体模型为基础,引入热膨胀系数,粘性衰减系数和损伤变量,综合考虑温度对岩石弹性变形、粘性流动以及结构损伤的共同影响,建立了岩石热损伤粘弹塑性本构关系,推导了考虑温度效应的岩石蠕变方程和卸载方程。基于损伤理论和不可逆热力学,推导了花岗岩热力耦合粘弹性损伤余能释放率的理论表达式,建立了岩石热力耦合损伤破坏的能量准则。计算表明,岩样损伤余能释放率随温度的升高和时间的延长而增大。这比用传统的单一结构损伤参量D所建立的损伤破坏准则更全面,更适用于处理岩石热力耦合损伤破坏行为。

论文目录

  • 致谢
  • 摘要
  • Abstract
  • 1 绪论
  • 1.1 论文选题的依据和意义(BASIS AND SIGNIFICANCE OF DISSERTATION)
  • 1.2 国内外研究现状(RESEARCH STATUS AT HOME AND ABROAD)
  • 1.2.1 温度作用下岩石物理力学性质的研究现状(Research Status of Rock Physical and Mechanical Properties under Temperature)
  • 1.2.2 岩石热破裂特征的研究现状(Research Status of Rock Thermal Rupture Characteristics)
  • 1.2.3 岩石热损伤理论和本构方程的研究现状(Research Status of Rock Thermal Damage Theory and Constitutive Equation)
  • 1.2.4 温度作用下岩石微观断裂机理的研究现状(Research Status of Rock Micro-fracture Mechanism under Temperature)
  • 1.3 本文主要研究内容与研究方法(RESEARCH CONTENT AND APPROACH)
  • 2 基础理论
  • 2.1 岩石强度理论(ROCK STRENGTH THEORY)
  • 2.1.1 库仑强度准则(Coulomb Strength Criterion)
  • 2.1.2 莫尔强度准则(Mohr Strength Criterion)
  • 2.1.3 Mises 强度准则(Mises Strength Criterion)
  • 2.1.4 Griffith 强度准则(Griffith Strength Criterion) [74]
  • 2.1.5 修正的 Griffith 强度准则(Modified Griffith Strength Criterion)
  • 2.1.6 Druckr-Prager 强度准则(Druckr-Prager Strength Criterion)
  • 2.2 岩石断裂与损伤理论(ROCK FRACTURE AND DAMAGE THEORY)
  • 2.2.1 裂纹的基本类型(Basic Types of Crack)
  • 2.2.2 裂纹尖端应力场(Crack-tip Stress Field)
  • 2.2.3 裂纹扩展准则(Criterion for Crack Propagation)
  • 2.2.4 岩石材料的损伤变量(Damage Variable of Rock)
  • 2.2.5 岩石损伤演化方程(Damage Evolution Equation of Rock)
  • 2.2.6 岩石损伤本构模型(Damage Constitutive Models of Rock)
  • 2.3 声发射基础理论(BASIC THEORY OF ACOUSTIC EMISSION(AE))
  • 2.3.1 声发射源的产生及类型(Generation and Types of AE source)
  • 2.3.2 声发射信号的表征参数(Characterization Parameters of AE Signal)
  • 2.4 脆韧性断口的位错分析理论[90](DISLOCATION ANALYSIS OF BRITTLE AND DUCTILE FRACTURE)
  • 2.4.1 脆性断口的形貌特征(Appearance Characteristics of Brittle Fracture)
  • 2.4.2 脆性断裂的机理(Mechanism of Brittle Fracture)
  • 2.4.3 韧性断口的形貌特征(Appearance Characteristics of Ductile Fracture)
  • 2.4.4 韧性断裂的机理(Mechanism of Ductile Fracture)
  • 3 温度作用下花岗岩力学性质的实验研究
  • 3.1 引言 (INTRODUCTION)
  • 3.2 实验条件及方法(EXPERIMENTAL METHOD AND CONDITION)
  • 3.2.1 实验设备(Experimental Equipment)
  • 3.2.2 声发射系统特征参数预制(Parameter Prefabrication of AE System)
  • 3.2.3 实时高温作用下花岗岩的单轴压缩实验过程(Experimental Process of Granite Uniaxial Compression at High Temperature)
  • 3.2.4 高温作用冷却后花岗岩的单轴压缩实验和声发射实验过程(Experimental Process on Granite Uniaxial Compression and AE after High Temperature)
  • 3.3 实验结果及分析(EXPERIMENTAL RESULTS AND ANALYSIS)
  • 3.3.1 温度对花岗岩质量、体积、密度的影响 (Influence of Temperature on Granite Mass, Volume and Density)
  • 3.3.2 实时高温作用下和高温作用冷却后花岗岩的应力-应变曲线(Stress-strain Curves of Granite at High Temperature and after High Temperature)
  • 3.3.3 实时高温作用下和高温作用冷却后花岗岩的峰值强度和弹性模量(Peak Strength and Elastic Modulus of Granite at High Temperature and after High Temperature)
  • 3.3.4 高温作用冷却后花岗岩的宏观破坏形态(Macroscopic Failure Morphology of Granite after High Temperature)
  • 3.3.5 不同温度作用下花岗岩的变形与声发射率(Deformation and AE Rates of Granite under Different Temperature)
  • 3.3.6 不同温度作用下花岗岩的声发射能率与振铃计数率(AE Energy Rates and Count Rates of Granite under Different Temperature)
  • 3.4 本章小结(SUMMARIZE)
  • 4 温度作用对花岗岩微结构影响的实验研究
  • 4.1 温度对花岗岩组分影响的 X 衍射实验研究(X-RAY DIFFRACTION EXPERIMENT ON GRANITE COMPONENTS UNDER TEMPERATURE)
  • 4.1.1 衍射原理(Diffraction Principle)
  • 4.1.2 实验过程(Experimental Process)
  • 4.1.3 衍射实验结果与分析(X-ray Diffraction Experimental Results and Analysis)
  • 4.2 温度对花岗岩微孔隙结构影响的压汞实验研究(MERCURY INJECTION EXPERIMENT ON MICROPORE STRUCTURE OF GRANITE UNDER TEMPERATURE)
  • 4.2.1 压汞实验基本原理(Basic Principle of Mercury Injection Experiment )
  • 4.2.2 实验测试仪器与方法(Experimental Equipment and Method)
  • 4.2.3 压汞实验结果与分析(Mercury Injection Experimental Results and Analysis)
  • 4.2.4 不同温度作用下花岗岩的孔隙体积分形维数(Fractal Dimensions of Pore Distribution of Granite at Different Temperature)
  • 4.2.5 温度对花岗岩孔隙率影响的机制分析(Mechanism Analysis of Temperature on Granite Porosity)
  • 4.3 温度对花岗岩断口形貌影响的扫描电镜实验研究(SEM EXPERIMENT ON FRACTURE APPEARANCE OF GRANITE UNDER TEMPERATURE)
  • 4.3.1 实验设备及方法(Experimental Equipment and Method)
  • 4.3.2 花岗岩断口的电镜扫描图象分析(Analysis of Granite Fracture Image with SEM)
  • 4.3.3 不同温度作用下花岗岩断口微观破坏形态与宏观特性的关系(Relation between Fracture Micro-morphology and Macro-characteristics of Granite at Different Temperature)
  • 4.4 温度作用下花岗岩脆韧性转移机理(BRITTLE-DUCTILE TRANSITION MECHANISM OF GRANITE UNDER TEMPERATURE)
  • 4.5 本章小结(SUMMARIZE)
  • 5 温度作用下花岗岩断裂行为损伤力学分析
  • 5.1 损伤的分类(CLASSIFICATION OF DAMAGE)
  • 5.2 损伤变量的选择(CHOICE OF DAMAGE VARIABLE)
  • 5.3 实验损伤分析(ANALYSIS OF EXPERIMENT DAMAGE)
  • 5.3.1 由于载荷作用产生的机械损伤(Mechanical Damage Produced by Load)
  • 5.3.2 由于温度作用产生的热损伤(Thermal Damage Produced by Temperature)
  • 5.3.3 花岗岩热力耦合损伤本构方程(Damage Constitutive Equation of Thermal-mechanical Coupling of Granite)
  • 5.4 花岗岩热损伤开裂机理(CRACKING MECHANISM OF GRANITE THERMAL DAMAGE)
  • 5.5 花岗岩热损伤破裂机理(RUPTURE MECHANISM OF GRANITE THERMAL DAMAGE)
  • 5.6 花岗岩在温度作用下的断裂机理 (FRACTURE MECHANISM OF GRANITE UNDER TEMPERATURE)
  • 5.6.1 热裂纹成核位错机理(Dislocation Mechanism of Thermal Crack Nucleation)
  • 5.6.2 扩散蠕变滑动机理(Sliding Mechanism of Diffusion Creep)
  • 5.7 本章小结(SUMMARIZE)
  • 6 岩石热损伤粘弹塑性本构模型理论研究
  • 6.1 基本理论模型(BASIC THEORETICAL MODEL)
  • 6.2 传统组合模型(TRADITIONAL COMBINATION MODEL)
  • 6.2.1 经验模型(Empirical Model)
  • 6.2.2 组合模型(Combination Model)
  • 6.3 单轴应力状态下岩石微分形式的热损伤粘弹塑性本构方程(DIFFERENTIAL THERMO-DAMAGE-ELASTO-VISCO-PLASTIC CONSTITUTIVE EQUATION OF ROCK UNDER UNIAXIAL COMPRESSION)
  • 6.3.1 仅考虑温度对弹性影响的本构方程(Constitutive Equation Considering the Influence of Temperature on Elasticity)
  • 6.3.2 考虑温度对弹性及粘性的影响的本构方程(Constitutive Equation Considering the Influence of Temperature on Elasticity and Viscosity)
  • 6.3.3 考虑温度对损伤、弹性及粘性共同影响的本构方程(Constitutive Equation Considering the Influence of Temperature on Damage, Elasticity and Viscosity)
  • 6.4 蠕变方程(CREEP EQUATION)
  • 6.4.1 仅考虑温度对弹性影响的蠕变方程(Creep Equation Considering the Influence of Temperature on Elasticity)
  • 6.4.2 考虑温度对弹性及粘性影响的蠕变方程(Creep Equation Considering the Influence of Temperature on Elasticity and Viscosity)
  • 6.4.3 考虑温度对损伤、弹性及粘性共同影响的蠕变方程(Creep Equation Considering the Influence of Temperature on Damage, Elasticity and Viscosity)
  • 6.5 卸载方程(UNLOADING EQUATION)
  • 6.5.1 仅考虑温度对弹性影响的卸载方程(Unloading Equation Considering the Influence of Temperature on Elasticity)
  • 6.5.2 考虑温度对弹性及粘性影响的卸载方程(Unloading Equation Considering the Influence of Temperature on Elasticity and Viscosity)
  • 6.5.3 考虑温度对损伤、弹性及粘性共同影响的卸载方程(Unloading Equation Considering the Influence of Temperature on Damage, Elasticity and Viscosity)
  • 6.6 考虑温度效应的多轴蠕变理论模型(THEORETICAL MODEL OF MULTIAXIAL CREEP CONSIDERING TEMPERATURE EFFECT)
  • 6.6.1 考虑温度对弹性影响的多轴蠕变方程(Multiaxial Creep Equation Considering the Influence of Temperature on Elasticity)
  • 6.6.2 考虑温度对弹性及粘性影响的的多轴蠕变方程(Multiaxial Creep Equation Considering the Influence of Temperature on Elasticity and Viscosity)
  • 6.6.3 考虑温度对损伤、弹性及粘性共同影响的多轴蠕变方程(Multiaxial Creep Equation Considering the Influence of Temperature on Damage, Elasticity and Viscosity)
  • 6.7 本章小结(SUMMARIZE)
  • 7 花岗岩热力损伤破坏的能量准则
  • 7.1 损伤热力学基本控制方程(BASIC GOVERNING EQUATION OF DAMAGE THERMODYNAMICS)
  • 7.2 各向同性材料热-力耦合损伤热力学势(THERMODYNAMIC POTENTIAL OF ISOTROPIC MATERIAL THERMAL-MECHANICAL COUPLING DAMAGE)
  • 7.2.1 不考虑损伤及温度变化的线弹性广义虎克定律(Linear Elastic Generalized Hooker Law without regarding to Damage and Temperature Variation)
  • 7.2.2 不考虑损伤但考虑温度变化的线弹性广义虎克定律(Linear Elastic Generalized Hooker Law without regarding to Damage but Considering Temperature Variation)
  • 7.2.3 自由能和自由余能函数(Function of Free Energy and Free Complementary Energy)
  • 7.2.4 不考虑损伤的自由能函数和自由余能函数(Function of Free Energy and Free Complementary Energy without Regarding to Damage)
  • 7.2.5 考虑损伤和热-力耦合时的自由能函数和自由余能函数(Function of Free Energy and Free Complementary Energy Considering Damage and Thermal-mechanical Coupling)
  • 7.3 考虑热力耦合的弹性损伤余能释放率(COMPLEMENTARY ENERGY DISCHARGE RATE OF ELASTIC DAMAGE CONSIDERING THERMAL-MECHANICAL COUPLING)
  • 7.4 考虑热力耦合的粘弹性损伤余能释放率(COMPLEMENTARY ENERGY DISCHARGE RATE OF VISCO-ELASTIC DAMAGE CONSIDERING THERMAL-MECHANICAL COUPLING)
  • 7.5 本章小结(SUMMARIZE)
  • 8 结论与展望
  • 8.1 结论(CONCLUSION)
  • 8.2 展望(EXPECTATION)
  • 参考文献
  • 作者简历
  • 学位论文数据集
  • 相关论文文献

    标签:;  ;  ;  ;  ;  

    温度载荷作用下花岗岩力学性质演化及其微观机制研究
    下载Doc文档

    猜你喜欢