本文主要研究内容
作者(2019)在《Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation》一文中研究指出:Two-dimensional(2 D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2 D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2 D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients,large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2 D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2 D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2 D conjugated polymer nanosheets for solar-driven water splitting and CO2 reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2 D conjugated polymer nanosheets for solar fuel generation are also included.
Abstract
Two-dimensional(2 D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2 D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2 D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients,large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2 D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2 D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2 D conjugated polymer nanosheets for solar-driven water splitting and CO2 reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2 D conjugated polymer nanosheets for solar fuel generation are also included.
论文参考文献
论文详细介绍
论文作者分别是来自Chinese Journal of Polymer Science的,发表于刊物Chinese Journal of Polymer Science2019年02期论文,是一篇关于,Chinese Journal of Polymer Science2019年02期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Chinese Journal of Polymer Science2019年02期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。