本文主要研究内容
作者(2019)在《Late Holocene hydroclimatic variations and possible forcing mechanisms over the eastern Central Asia》一文中研究指出:Hydroclimatic variations over the eastern Central Asia are highly sensitive to changes in hemispheric-scale atmospheric circulation systems. To fully understand the long-term variability and relationship between hydroclimate and atmospheric circulation system, we present a high-resolution lascustrine record of late Holocene hydroclimate from Lake Sayram, Central Tianshan Mountains, China, based on the total organic carbon, total nitrogen, and carbonate contents, carbon/nitrogen ratios, and grain size. Our results reveal four periods of substantially increased precipitation at the interval of 4000–3780, 3590–3210, 2800–2160, and 890–280 cal yr BP, and one period of slightly increased precipitation from 1700–1370 cal yr BP. These wetter periods broadly coincide with those identified in other records from the mid-latitude Westerlies-dominated eastern Central Asia, including the northern Tibetan Plateau. As such, a similar hydroclimatic pattern existed over this entire region during the late Holocene. Based on a close similarity of our record with reconstruction of North Atlantic Oscillation indices and solar irradiance, we propose that decreased solar irradiance and southern migration of the entire circum-North Atlantic circulation system, particularly the main pathway of the mid-latitude Westerlies, significantly influenced hydroclimate in eastern Central Asia during the late Holocene. Finally, the inferred precipitation at Lake Sayram has increased markedly over the past 100 years, although this potential future changes in hydroclimate in Central Asia need for further investigation.
Abstract
Hydroclimatic variations over the eastern Central Asia are highly sensitive to changes in hemispheric-scale atmospheric circulation systems. To fully understand the long-term variability and relationship between hydroclimate and atmospheric circulation system, we present a high-resolution lascustrine record of late Holocene hydroclimate from Lake Sayram, Central Tianshan Mountains, China, based on the total organic carbon, total nitrogen, and carbonate contents, carbon/nitrogen ratios, and grain size. Our results reveal four periods of substantially increased precipitation at the interval of 4000–3780, 3590–3210, 2800–2160, and 890–280 cal yr BP, and one period of slightly increased precipitation from 1700–1370 cal yr BP. These wetter periods broadly coincide with those identified in other records from the mid-latitude Westerlies-dominated eastern Central Asia, including the northern Tibetan Plateau. As such, a similar hydroclimatic pattern existed over this entire region during the late Holocene. Based on a close similarity of our record with reconstruction of North Atlantic Oscillation indices and solar irradiance, we propose that decreased solar irradiance and southern migration of the entire circum-North Atlantic circulation system, particularly the main pathway of the mid-latitude Westerlies, significantly influenced hydroclimate in eastern Central Asia during the late Holocene. Finally, the inferred precipitation at Lake Sayram has increased markedly over the past 100 years, although this potential future changes in hydroclimate in Central Asia need for further investigation.
论文参考文献
论文详细介绍
论文作者分别是来自Science China(Earth Sciences)的,发表于刊物Science China(Earth Sciences)2019年08期论文,是一篇关于,Science China(Earth Sciences)2019年08期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Science China(Earth Sciences)2019年08期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。