本文主要研究内容
作者(2019)在《Experimental Study on A Sloshing Mitigation Concept Using Floating Layers of Solid Foam Elements》一文中研究指出:A sloshing mitigation concept taking advantage of floating layers of solid foam elements is proposed in the present study. Physical experiments are carried out in a liquid tank to investigate the hydrodynamic mechanism of this concept. Effects of the foam-layer thickness, excitation amplitude, and excitation frequency on the sloshing properties are analyzed in detail. It is found that the floating layers of solid foam elements do not evidently affect the fundamental natural sloshing frequency of the liquid tank evidently among the considered cases. At the resonant condition, the maximum wave height and dynamic pressure are greatly reduced as the foam-layer thickness increases. Higher-order pressure components on the tank side gradually vanish with the increase of the foam-layer thickness. Cases with different excitation amplitudes are also analyzed. The phenomenon is observed when the wave breaking in the tank can be suppressed by solid foam elements.
Abstract
A sloshing mitigation concept taking advantage of floating layers of solid foam elements is proposed in the present study. Physical experiments are carried out in a liquid tank to investigate the hydrodynamic mechanism of this concept. Effects of the foam-layer thickness, excitation amplitude, and excitation frequency on the sloshing properties are analyzed in detail. It is found that the floating layers of solid foam elements do not evidently affect the fundamental natural sloshing frequency of the liquid tank evidently among the considered cases. At the resonant condition, the maximum wave height and dynamic pressure are greatly reduced as the foam-layer thickness increases. Higher-order pressure components on the tank side gradually vanish with the increase of the foam-layer thickness. Cases with different excitation amplitudes are also analyzed. The phenomenon is observed when the wave breaking in the tank can be suppressed by solid foam elements.
论文参考文献
论文详细介绍
论文作者分别是来自China Ocean Engineering的,发表于刊物China Ocean Engineering2019年01期论文,是一篇关于,China Ocean Engineering2019年01期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自China Ocean Engineering2019年01期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。