基于改进连续蚁群算法的化工生产过程优化

基于改进连续蚁群算法的化工生产过程优化

论文摘要

对于化工生产过程系统这种典型的复杂系统而言,优化方法是一种能提高其系统性能的有效手段。优化技术对其效率的提高、能耗的降低、资源的合理利用及经济效益的提高等均有显著的效果。但是随着化工过程目标问题的规模越来越大,模型结构也越来越复杂,实现系统的最优化也越来越困难,对现有的优化方法提出了挑战,因此对高效的智能化的优化技术的需求日益迫切。针对这一问题,本文采用一种较新的智能优化方法,即蚁群优化算法(Ant ColonyOptimization,ACO)来对化工生产过程进行优化。蚁群优化算法以其优越的问题分布式求解模式在组合优化问题的求解中取得了极大成功,但很多化工过程上的实际问题通常表达成一个连续的最优化问题。如何拓展蚁群优化算法的功能,使之也适用于连续问题,此为亟待应对的挑战,这也是本文的主要研究内容。本文首先从生物学原理和数学原理两方面对基本蚁群优化算法进行了深入地分析,并建立了其数学模型和程序框架。然后讨论了基本蚁群算法的离散本质,以及用其解决连续域优化问题的主要思路。在此思路的指导下,提出了一种改进的连续蚁群优化算法。并选用典型的连续域优化问题,将其与基于网格划分策略的连续域蚁群算法的有效性进行了比较和验证。之后运用算法融合思想,将蚁群优化的基本思想与神经网络相融合,用改进的连续域蚁群算法对神经网络的权阈值进行了优化,弥补了BP网络易于陷入局部最小的缺点。并用实例验证了这一新的连续蚁群BP网络的可行性。最后将之前提出的改进的连续蚁群算法和基于此算法的BP网络分别运用与丁烯烷化过程的优化和热偶精馏塔的模拟优化,并用MATLAB语言编写了仿真程序。本文提出的此种改进的连续蚁群算法原本只能应用于无约束的连续域优化问题的求解,本文提出将其应用于带约束的丁烯烷化过程的优化,解决了算法适应问题,仿真结果显示,求解的稳定性和全局优化性能良好。而在热偶精馏塔的建模中,新的连续蚁群BP网络也体现了良好的预测效果,具有足够的精度模拟其生产过程。

论文目录

  • 摘要
  • Abstract
  • 1 绪论
  • 1.1 化工过程的优化概述
  • 1.2 最优化问题
  • 1.3 最优化技术的发展
  • 1.4 群智能优化算法
  • 1.4.1 粒子群算法
  • 1.5 算法性能的度量
  • 1.6 本文结构
  • 2 基本蚁群算法
  • 2.1 基本蚁群算法生物学原理
  • 2.1.1 蚁群行为描述
  • 2.1.2 基本蚁群算法的机制原理
  • 2.1.3 基本蚁群算法的系统特征
  • 2.2 基本蚁群算法的数学原理
  • 2.2.1 基本蚁群算法的数学模型
  • 2.2.2 基本蚁群算法的实现步骤
  • 2.2.3 基本蚁群算法的程序流程图
  • 2.3 蚁群算法的收敛性研究
  • 2.3.1 问题描述
  • 2.3.2 收敛性分析
  • 3 连续域蚁群算法研究
  • 3.1 蚁群算法的离散本质
  • 3.2 连续域蚁群优化算法
  • 3.2.1 离散蚁群算法解决连续域问题主要思路
  • 3.2.2 基于网格划分策略的连续域蚁群算法
  • 3.2.3 改进的连续域蚁群算法
  • 3.3 两种连续蚁群算法的比较
  • 3.4 改进的连续蚁群算法优化人工神经网络
  • 3.4.1 算法融合思想
  • 3.4.2 算法验证
  • 4 改进的连续蚁群算法的化工应用
  • 4.1 改进的连续蚁群算法应用于丁烯烷化过程
  • 4.1.1 丁烯烷化过程工艺流程介绍
  • 4.1.2 丁烯烷化过程的约束优化
  • 4.2 改进的连续蚁群算法应用于热耦精馏过程
  • 4.2.1 热偶精馏过程工艺流程介绍
  • 4.2.2 热偶精馏过程的模拟优化
  • 结论
  • 参考文献
  • 攻读硕士学位期间发表学术论文情况
  • 致谢
  • 相关论文文献

    • [1].算法:一种新的权力形态[J]. 治理现代化研究 2020(01)
    • [2].算法决策规制——以算法“解释权”为中心[J]. 现代法学 2020(01)
    • [3].面向宏观基本图的多模式交通路网分区算法[J]. 工业工程 2020(01)
    • [4].算法中的道德物化及问题反思[J]. 大连理工大学学报(社会科学版) 2020(01)
    • [5].算法解释请求权及其权利范畴研究[J]. 甘肃政法学院学报 2020(01)
    • [6].算法新闻的公共性建构研究——基于行动者网络理论的视角[J]. 人民论坛·学术前沿 2020(01)
    • [7].算法的法律性质:言论、商业秘密还是正当程序?[J]. 比较法研究 2020(02)
    • [8].关键词批评视野中的算法文化及其阈限性[J]. 学习与实践 2020(02)
    • [9].掌控还是被掌控——大数据时代有关算法分发的忧患与反思[J]. 新媒体研究 2020(04)
    • [10].美国算法治理政策与实施进路[J]. 环球法律评论 2020(03)
    • [11].算法解释权:科技与法律的双重视角[J]. 苏州大学学报(哲学社会科学版) 2020(02)
    • [12].大数据算法决策的问责与对策研究[J]. 现代情报 2020(06)
    • [13].大数据时代算法歧视的风险防控和法律规制[J]. 河南牧业经济学院学报 2020(02)
    • [14].风险防范下算法的监管路径研究[J]. 审计观察 2019(01)
    • [15].模糊的算法伦理水平——基于传媒业269名算法工程师的实证研究[J]. 新闻大学 2020(05)
    • [16].算法推荐新闻对用户的影响及对策[J]. 新媒体研究 2020(10)
    • [17].如何加强对算法的治理[J]. 国家治理 2020(27)
    • [18].“后真相”背后的算法权力及其公法规制路径[J]. 行政法学研究 2020(04)
    • [19].算法规制的谱系[J]. 中国法学 2020(03)
    • [20].论算法排他权:破除算法偏见的路径选择[J]. 政治与法律 2020(08)
    • [21].政务算法与公共价值:内涵、意义与问题[J]. 国家治理 2020(32)
    • [22].算法的法律规制研究[J]. 上海商业 2020(09)
    • [23].蚁群算法在文字识别中的应用研究[J]. 信息与电脑(理论版) 2019(22)
    • [24].大数据聚类算法研究[J]. 无线互联科技 2018(04)
    • [25].RSA算法的改进研究[J]. 计算机与网络 2018(14)
    • [26].智能时代的新内容革命[J]. 国际新闻界 2018(06)
    • [27].改进的负载均衡RSA算法[J]. 电脑知识与技术 2018(25)
    • [28].基于深度学习的视觉跟踪算法研究综述[J]. 计算机科学 2017(S1)
    • [29].大数据算法的歧视本质[J]. 自然辩证法研究 2017(05)
    • [30].深度学习算法在智能协作机器人方面的应用[J]. 中国新通信 2017(21)

    标签:;  ;  ;  ;  

    基于改进连续蚁群算法的化工生产过程优化
    下载Doc文档

    猜你喜欢