论文摘要
目的:神经干细胞(neural stem cells,NSCs)是具有分化为神经元细胞、星形胶质细胞、少突胶质细胞的能力,可自我更新并提供脑组织细胞的干细胞。NSCs的出现为临床治疗神经退行性疾病以及神经系统损伤带来了新的希望。但无论是体外还是体内研究的结果,NSCs分化为神经元的比例都明显低于胶质细胞,致使难以达到理想的替代因损伤和疾病等原因造成的神经元缺失的目的。骨髓基质细胞(bone marrow stromal cells,BMSCs)是来源于骨髓的多潜能干细胞,其主要功能是支持和营养造血细胞。近年来研究发现BMSCs能分泌许多细胞因子如脑源性神经营养因子(BDNF)、碱性成纤维生长因子(bFGF)、血管内皮生长因子(VEGF)、白细胞介素(IL)等,而且这些细胞因子对NSCs的分化、存活及增殖也有一定影响。本实验室研究已证实BMSCs能够诱导中脑NSCs分化为高比例神经元,并且是BMSCs分泌至培养液中的可溶性分子在这一过程中发挥了重要作用,但究竟是这些可溶性分子通过什么途径在起作用目前尚不清楚。丝裂酶原活化蛋白激酶(mitogen-activated protein kinase, MAPK)普遍存在于多种生物细胞内,MAPK将细胞外信号转导至胞内,从而参与细胞的生长、分化和细胞凋亡等过程。本实验旨在利用Neurobasal培养液制成的BMSCs条件培养液(Neurobasal-conditioned medium,N-CM)培养NSCs,通过在培养体系中加入MAPKs信号转导通路的抑制剂,观察其对NSCs分化为神经元和星型胶质细胞的影响,明确MAPKs信号转导通路在这一过程中的作用,初步探讨了BMSCs调节NSCs分化的信号转导机制。方法:分离SD大鼠股骨和胫骨,冲洗骨髓腔,将细胞悬液离心后种入75ml培养瓶内。取36代的BMSCs,待细胞铺满瓶底85%后,弃去培养液,更换为Neurobasal培养液6ml,培养24 h后,离心收集上清即为N-CM。取新生大鼠中脑,机械分散成单细胞后,离心弃上清,加入DMEM/F12(1∶1)添加2% B27的无血清培养基,同时加入20ng/ml bFGF,将细胞种入培养瓶中。在分离培养7d左右单个的NSCs便可增殖形成球体(NSCs球)。此后,每5~7d传代1次。将二代或三代NSCs球均匀种植于预先包被多聚赖氨酸的35 mm培养皿中,待NSCs球贴壁后更换培养液。实验分为三组:(1)自然分化组:用单纯Neurobasal培养液培养NSCs;(2)对照组:用N-CM培养NSCs;(3)抑制剂组:在N-CM培养的NSCs中分别加入三种MAPKs信号转导通路抑制剂,浓度为:PD98059 5μM,SB203580 4μM,Genistin 4μM。培养3d后,进行免疫细胞化学染色。在倒置荧光显微镜下每个培养皿随机选择10个视野,分别计数每个视野内MAP-2及GFAP阳性细胞数和同一个视野中的细胞总数,得到该视野阳性细胞百分比。各组实验独立重复3次,进行相同的计数过程,最后取均值。结果采用SPSS13.0统计软件处理,所有计量资料均采用均数±标准差表示,各组之间采用t检验进行显著性分析,以p<0.05为差异有显著性。结果:1.N-CM对NSCs分化的影响自然分化组中细胞总体生长状态很差,细胞核多有固缩、破碎。神经元稀少,体积小、突起不明显。迁移距离较近,多聚集在一起。星形胶质细胞数量多,突起粗,多聚集在神经球的中央,呈放射状排列。这两种细胞占神经干细胞球中分化出的细胞的大多数。而用N-CM培养NSCs,细胞生长状况良好,细胞核大小均一,很少有破碎。神经元较自然分化组多,突起较长,迁移距离远,分布较均匀。星形胶质细胞较自然分化组数量少,胞体细长,分布较分散。N-CM组NSCs分化为神经元的比例为(34.26±9.31%),高于自然分化组(18.02±7.69%)(p<0.01);星形胶质细胞的比例为(36.92±10.14%),低于自然分化组(60.11±8.99%)(p<0.01),说明N-CM对NSCs分化为神经元具有上调作用,而对星形胶质细胞有抑制作用。2.含三种抑制剂的N-CM诱导NSCs分化PD98059组和SB203580组细胞生长状况较好,胞核较均一,有少量破碎。神经元较对照组数量少,突起不明显,迁移距离不远,分布尚均匀,这两组NSCs分化为神经元的比例为(20.37±9.25%)和(22.14±8.47%)均明显低于对照组(34.26±9.31%)(p<0.01)。星形胶质细胞粗大、扁平,突起多,形态不规则,较对照组数量多,迁移距离远,分布分散。这两组NSCs分化为星形胶质细胞的比例为(47.43±11.45%)和(48.72±10.58%)均明显高于对照组(36.92±10.14%)(p<0.05)。而Genistin组与对照组相比,神经元和星形胶质细胞的形态、迁移距离及数量统计均无明显差别(p >0.05)。结论:本研究证实:1.BMSCs分泌的可溶性分子能够诱导NSCs分化为高比例的神经元。2. BMSCs分泌的可溶性分子不仅能够调节NSCs的分化,还能够影响神经元和胶质细胞形态、突起长短和迁移等细胞形态学和行为学。3. BMSCs分泌的可溶性分子诱导NSCs分化为高比例的神经元与ERK1/2信号转导通路和p38信号转导通路有关,而与SAPK/JNK信号转导通路无关,初步揭示了其信号转导机制。
论文目录
相关论文文献
- [1].血小板活化相关信号转导机制研究进展[J]. 心血管病学进展 2020(10)
- [2].中性粒细胞胞外诱捕网信号转导机制研究进展[J]. 襄阳职业技术学院学报 2020(02)
- [3].我国科学家揭示新的植物激素信号转导机制[J]. 农药市场信息 2020(14)
- [4].植物对氮素响应的信号转导机制的研究进展[J]. 重庆工贸职业技术学院学报 2015(03)
- [5].力学影响细胞凋亡及其信号转导机制研究进展[J]. 医用生物力学 2014(02)
- [6].味觉受体信号转导机制及对微生物的调控[J]. 华西口腔医学杂志 2017(05)
- [7].乳腺癌相关的信号转导机制研究进展[J]. 现代肿瘤医学 2015(05)
- [8].脂联素抑制血管紧张素Ⅱ诱导的心肌肥大的信号转导机制研究[J]. 中国动脉硬化杂志 2009(07)
- [9].钙调磷酸酶调控效应及信号转导机制与疾病相关性研究进展[J]. 中国医疗前沿 2013(23)
- [10].生长激素受体介导的信号转导机制研究进展[J]. 中国畜牧兽医 2014(12)
- [11].三氧化二砷影响肝癌细胞血管内皮生长因子表达信号转导机制的初步探讨[J]. 农垦医学 2009(04)
- [12].β-休止蛋白的信号转导机制及其对平滑肌的作用[J]. 同济大学学报(医学版) 2011(04)
- [13].巨噬细胞移动抑制因子信号转导机制及靶向治疗的研究进展[J]. 现代生物医学进展 2009(04)
- [14].EPO/EPOR及其信号转导机制研究进展[J]. 国际病理科学与临床杂志 2009(05)
- [15].植物盐胁迫相关信号转导机制的研究[J]. 安徽农业科学 2014(34)
- [16].细胞分裂素的信号转导机制[J]. 安徽农业科学 2012(25)
- [17].中国农大揭示植物在黑暗下的ABA信号转导机制[J]. 蔬菜 2020(03)
- [18].锌与心肌保护[J]. 中国煤炭工业医学杂志 2014(07)
- [19].α-黑素细胞刺激素作用的信号转导机制[J]. 生命的化学 2011(05)
- [20].脓毒症病理生理及信号转导机制的研究进展[J]. 中华医院感染学杂志 2019(22)
- [21].华东理工大学发现海温调控病原菌毒力信号转导机制[J]. 食品与机械 2016(06)
- [22].肺微血管内皮细胞通透性调控的信号转导机制[J]. 生理科学进展 2008(04)
- [23].哺乳动物味觉感受器T1Rs受体家族及信号转导机制的研究进展[J]. 中国牛业科学 2010(04)
- [24].上皮-间质转化的信号转导机制[J]. 国际病理科学与临床杂志 2009(04)
- [25].信号转导机制与阿尔茨海默病[J]. 现代生物医学进展 2009(10)
- [26].剪切力诱导细胞骨架重组在力学信号转导机制中的作用[J]. 国际骨科学杂志 2009(04)
- [27].克罗恩病肠壁纤维化的分子与信号转导机制的研究进展[J]. 国际消化病杂志 2016(04)
- [28].基因转录爆发的信号转导机制[J]. 生物信息学 2019(04)
- [29].调控抗病毒干扰素产生的信号转导机制研究进展[J]. 中国免疫学杂志 2014(08)
- [30].非生物环境因子诱导气孔关闭的信号转导机制[J]. 分子植物育种 2016(05)