论文摘要
在航天失重环境停留可引起机体流体静压消失,从而使全身动脉血管系统的跨壁压发生重新分布变化:脑及上半身血压处于较地面1G直立体位时相对升高的“高血压”状态;下半身血管则处于较1G直立时相对较低的“低血压”状态。本实验室首次在地面动物实验系统阐明:模拟失重可引起大鼠脑动脉血管的肌源性紧张度增强,收缩反应性升高,血管中膜肥厚和平滑肌细胞层数增多,以及血管周围神经支配增强等适应性变化。而对于后身中、小动脉,则可引起肌源性紧张度减弱,收缩反应性降低,血管中膜萎缩,以及血管周围神经支配减弱等变化。据此我们曾提出“外周效应器机制假说”,认为失重所引起的心肌与动脉血管平滑肌结构和功能改变很可能是导致飞行后心血管失调的另一个重要原因(首要因素仍是血量减少)。我们还进一步发现:血管平滑肌离子通道机制与血管组织局部肾素-血管紧张素系统(local renin-angiotensin system, L-RAS)可能是介导失重所致血管区域特异性适应变化的重要调节环节。在对抗措施研究方面,我们首次报道了每日短时-GX重力[模拟间断性人工重力(intermittent artificial gravity, IAG)]对防止模拟失重致心肌与动脉血管不良影响有令人惊奇的对抗效果。但还有以下问题需进一步阐明:首先,我们前期工作主要来自大鼠肌型中、小动脉,而对于弹力型大动脉血管的研究则较少,影响我们对失重致血管适应变化的全面了解。例如,大血管壁周向应力集中于靠近管腔的肌层,如果血管跨壁压力分布是引起血管区域特异性适应变化的始动原因,则显著的重塑变化应发生于这些部位。其次,近年开始重视失重是否可引起大血管顺应性降低的问题,故有关弹力型大血管中膜细胞外间质的变化,需加强研究。再者,对于L-RAS的作用仍需通过药理阻断实验等进一步加以阐明。而且以大血管组织为标本,将更加有利于采用多种实验方法进行观察。最后,关于重力性对抗措施的机理问题,我们虽然已观察到,其对于肌型中等大小动脉血管的令人惊奇效果,但仍需进一步观察其对于弹力型大动脉血管重塑及关联的L-RAS改变的效果。为了回答以上问题,我们以“尾部悬吊头低位倾斜大鼠模型”模拟中期(4周)失重对动脉系统的影响,以每日1 h恢复正常体位(站立)模拟IAG的对抗效果。用组织形态测量研究大血管壁各肌层与弹力层的厚度、横截面积及血管内径等参数的变化。用免疫组织化学、蛋白免疫印迹分析、原位杂交及实时PCR等四种方法研究大动脉血管壁组织L-RAS关键成分,血管紧张素原(angiotensinogen, AO)及血管紧张素Ⅱ1型受体(angiotensinⅡreceptor type 1, AT1R)的表达与定位。最后,我们还利用所建立的血管灌流培养系统,初步观察了每日短时低血管压力是否可以防止长时间异常压力引起的重塑变化,以为进一步的机理研究探索新的途径。本工作的主要发现如下:(1) 28天模拟失重可引起大鼠前/后身中等大小肌型动脉血管结构发生区域特异性适应改变。在光镜下通过组织形态学测量再次验证了我室前期电镜下观察的实验结果:28天模拟失重后,与对照组(CON)相比,悬吊组(SUS)基底动脉的管壁厚度(T)、中膜横截面积(CSA)及基底动脉的平滑肌细胞层数(NCL)分别增加了25.9%、17.6%和20.5% (P<0.01),而两组的内腔直径(D)和平滑肌细胞平均横截面积(AC)则没有显著性差别;反之,SUS组胫前动脉的T、CSA和NCL分别减小了15.2%、17.3%和13.6% (P<0.01),且两组的D和AC没有显著差别。(2) 28天模拟失重可引起大鼠前/后身弹力型大动脉血管结构发生区域特异性适应改变。在光镜下测量结果显示: SUS组颈总动脉平均管壁厚度(TW)较CON组增加了25.6% (P<0.01)。而两种动脉的D、平滑肌层层数(NM)、弹力膜层数(NEL)及腹主动脉的TW,在两组间均无显著差别。颈总动脉管壁有4层平滑肌层和4层弹力膜层。与CON组相比,SUS组大鼠颈总动脉从M1到M4的各平滑肌层厚度分别增加了44.0%、42.4%、22.2%及39.8% (P<0.01)。反之,腹主动脉管壁有9层平滑肌层和9层弹力膜层,与CON组相比,SUS组大鼠腹主动脉从M1到M4的各平滑肌层厚度分别减少了17.0%、11.7%、11.4% (P<0.01)及10.1% (P<0.05),而从M5到M9的各平滑肌层厚度则没有明显变化。再者,SUS组大鼠颈总动脉4层平滑肌层的CSA均显著增大,且以M1和M2的增加最为明显。而SUS组大鼠腹主动脉M1、M2和M3的CSA降低最显著。与平滑肌层厚度变化相反,模拟失重后颈总动脉与腹主动脉各弹力膜层的厚度和CSA则分别显示降低和增加趋势,并且个别层的差别已达显著程度。(3) 28天模拟失重可引起大鼠颈总动脉和腹主动脉管壁组织中的Ao与AT1R蛋白与基因表达分别发生上调和下调改变。免疫组织化学实验显示,AO与AT1R蛋白染色呈棕色,主要分布在血管外膜和周围组织,而中膜较少。模拟失重后,颈总动脉管壁中膜和外膜中的AO与AT1R免疫反应性显著增强,而腹主动脉则显著减弱。免疫蛋白印迹分析实验进一步表明:与CON组相比,SUS组大鼠颈总动脉的AO与AT1R蛋白表达分别增加了130.0%和50.0% (P<0.05);而SUS组腹主动脉的AO与AT1R蛋白表达则分别减少了48.9%和36.8% (P<0.05)。原位杂交实验显示,被检测到的AO与AT1R mRNA信号主要分布于血管组织的中膜与外膜。模拟失重后,颈总动脉管壁中膜和外膜中的AO与AT1R mRNA信号显著增强,而在腹主动脉则显著减弱。实时PCR实验进一步表明:与CON组相比,SUS组大鼠颈总动脉的AO与AT1R mRNA表达分别增加了164.7% (P<0.01)和70.2% (P<0.05);而SUS组大鼠腹主动脉的AO与AT1R mRNA表达则分别降低了32.6% (P<0.05)和55.1% (P<0.01)。(4)阻断AT1R的条件下,28天模拟失重仍然能引起基底动脉与颈总动脉发生相对的肥厚性改变,并且腹主动脉的AO与AT1R蛋白表达显著减少。利用losartan慢性阻断AT1R 4周后,两个给药组[对照给药组(C+L),悬吊给药组(S+L)]的基底动脉、胫前动脉、颈总动脉与腹主动脉的相关参数普遍较未给药组为低。如与对照组(C)相比,C+L组基底动脉的T、CSA、Ac和NCL分别降低了15.5%、17.6%、11.3%和10.3% (P<0.05,或<0.01),而C+L组胫前动脉的T、CSA、Ac和NCL则分别减少了30.2%、21.1%、16.1 %和23.7% (P<0.05,或<0.01)。与C组相比,C+L组颈总动脉与腹主动脉的T也分别减少了29.9%和8.2% (P<0.01)。但与C+L相比, S+L组基底动脉的T、CSA和NCL仍然分别增加了12.2%、14.3%和5.7% (P<0.05,或<0.01),而S+L组胫前动脉的上述各项参数则未见有显著改变;S+L组颈总动脉的T增加了23.0% (P<0.05),而腹主动脉的T则仅呈减小趋势。与C组相比,C+L组颈总动脉AO和AT1R的表达无显著性变化;而腹主动脉的AO及AT1R表达均显著减低(P<0.05)。与C+L组相比,S+L组颈总动脉AO和AT1R的表达均无显著性改变;而S+L组腹主动脉的AT1R表达降低(P<0.01)。(5)每日1 h站立可完全防止模拟失重大鼠弹力型大动脉血管发生适应性重塑及AO与AT1R表达变化。本实验除了再次验证我们早先关于肌型中等动脉血管的报道,还首次观察到每日1 h站立也可完全防止模拟失重大鼠弹力型大动脉血管的区域特异性重塑变化。与CON组相比,模拟失重+ 1 h/d站立组(SUS+STD1)大鼠颈总动脉的TW、各平滑肌层的厚度和CSA均无显著性改变;但其与SUS组间的差别则达显著程度(P<0.01)。再者,与CON组相比,SUS+STD1组腹主动脉的M1~M4的各平滑肌层厚度和M1~M4的CSA均无显著性改变;但其与SUS组的差别则达显著程度(P<0.05,或<0.01)。此外,每日1 h站立也完全防止了两种大动脉血管组织中相关联的AO与AT1R蛋白与mRNA表达发生改变。(6)血管灌流培养实验的初步结果支持血管跨壁压是始动因素的假说。我们课题组已初步建立了血管灌流培养系统。在不同的灌流压下培养大鼠颈总动脉血管3天后,免疫组织化学染色显示,血管组织中的c-纤维粘连蛋白(c-fibronectin, c-FN)主要分布于中膜靠近管腔的平滑肌层中,且离管腔越远的平滑肌层染色越淡。在高灌流压(150 mmHg)下血管组织中的c-FN表达增加,而在低灌流压(80或0 mmHg)时表达很少;但在持续高压灌流下间断地降低灌流压,则血管壁组织中的c-FN表达很少,与低压灌流时相似。总之,以上发现进一步支持了我们的假说,即压力本身是失重引发血管区域特异性适应改变的始动因素,并且血管的局部RAS在该调节中发挥了重要作用。我们的工作也为重力性对抗措施IAG提供了重要的生理依据。血管灌流培养技术为进一步的机理研究提供理想的活体实验模型。
论文目录
相关论文文献
- [1].超声评价模拟失重状态下女性颈内动脉及椎动脉血流[J]. 中华临床医师杂志(电子版) 2013(02)
- [2].模拟失重对门静脉血流动力学影响的彩色多普勒超声研究[J]. 中华医学超声杂志(电子版) 2010(05)
- [3].头低位卧床模拟失重状态下房室平面运动的定量组织速度成像[J]. 第四军医大学学报 2009(10)
- [4].模拟失重条件下人体出汗变化规律的实验研究[J]. 湖南大学学报(自然科学版) 2017(09)
- [5].心肌做功指数评价模拟失重对成人右心功能的影响[J]. 航天医学与医学工程 2010(05)
- [6].模拟失重对肺微血管内皮细胞屏障功能的影响[J]. 军医进修学院学报 2012(09)
- [7].血管回声跟踪技术评价模拟失重状态对女性颈总动脉血管弹性的影响[J]. 中华临床医师杂志(电子版) 2012(20)
- [8].模拟失重环境下个体认知功能研究新进展[J]. 科学通报 2011(33)
- [9].模拟失重状态下大鼠心血管中枢组织基因组变化研究[J]. 航天医学与医学工程 2010(04)
- [10].模拟失重对人自然杀伤细胞毒活性的影响[J]. 航天医学与医学工程 2009(05)
- [11].模拟失重对大鼠心肌组织细胞因子基因表达谱的影响[J]. 航天医学与医学工程 2008(01)
- [12].中药对模拟失重大鼠骨骼-肌肉系统干预的初步研究[J]. 中国中医药信息杂志 2008(05)
- [13].模拟失重48h后血管内皮细胞长链非编码RNA的差异表达分析[J]. 航天医学与医学工程 2019(01)
- [14].回转模拟失重对共培养体系中平滑肌细胞增殖及凋亡的影响[J]. 贵州医科大学学报 2019(03)
- [15].间断人工重力对模拟失重大鼠股动脉整合素αvβ3通路分子表达的影响[J]. 空军医学杂志 2016(06)
- [16].模拟失重状态下人体焦虑状况及心理状态调查分析[J]. 护理研究 2011(05)
- [17].模拟失重及再负荷对大鼠承重骨影响的研究进展[J]. 航天医学与医学工程 2010(06)
- [18].模拟失重状态对健康人视觉诱发电位的影响[J]. 总装备部医学学报 2009(03)
- [19].解除模拟失重后清醒大鼠血压信号的谱分析[J]. 生理学报 2008(01)
- [20].结合模拟失重,改进大学生理学骨骼肌收缩实验[J]. 四川动物 2019(05)
- [21].失重或模拟失重条件下细胞骨架调控血管内皮功能的研究进展[J]. 解放军医学院学报 2015(02)
- [22].失重或模拟失重对血管内皮细胞影响的研究进展[J]. 解放军医学院学报 2013(12)
- [23].模拟失重可加重超重所致大鼠学习记忆功能障碍和神经细胞凋亡[J]. 医学争鸣 2010(04)
- [24].不同时长模拟失重对大鼠生理指标的影响[J]. 中国医药导报 2018(16)
- [25].尾悬吊模拟失重对雌性大鼠生殖功能的影响[J]. 中国病理生理杂志 2011(04)
- [26].模拟失重环境对动物腰椎间盘Ⅰ、Ⅱ型胶原、转化生长因子-β的影响[J]. 空军医学杂志 2016(06)
- [27].中药复方含药血清对回转模拟失重成骨细胞影响的观察[J]. 中国中医骨伤科杂志 2009(02)
- [28].模拟失重对大鼠股骨骨髓微循环的影响[J]. 空军总医院学报 2009(03)
- [29].中药复方干预3周模拟失重大鼠骨丢失的初步研究[J]. 中国骨伤 2008(09)
- [30].胰岛素样生长因子-1对模拟失重下成骨细胞整合素亚单位表达的影响[J]. 广东医学 2013(04)
标签:微重力论文; 航天飞行后心血管失调论文; 对抗措施论文; 间断性人工重力论文; 血管重塑论文; 局部肾素血管紧张素系统论文; 血管紧张素原论文; 血管紧张素型受体论文; 基因表达论文; 蛋白表达论文; 大弹力动脉论文; 血管灌流培养论文;