本文主要研究内容
作者(2019)在《Mechanical alloying behaviors of Mo-Si-B-based alloy from elemental powders under different milling conditions》一文中研究指出:Elemental powder mixtures with the composition of Mo-12Si-10B-3Zr-0.3Y(at%)were milled in a planetary ball mill using hardened stainless-steel milling media under argon atmosphere.Effects of milling time,milling speed,process control agent,ball-to-powder ratio and milling ball size on the mechanical alloying processes were investigated from the points of morphology,internal structure,grain size,microstrain,phase constituent and issolution of solute atoms.It is shown that under all conditions,the microstructural evolutions of mechanically milled powder particles are similar.The morphological evolution can roughly be divided into five stages:individual particle,irregular blocky composite particle,flakeshaped particle,agglomerate and single particle.The internal structure generally undergoes five stages:individual particle,coarse lamellar structure,fine lamellar structure,non-uniformly mixed structure and plum-pudding structure.Regardless of exceptional cases,the grain size of Moss decreases and its microstrain increases with the increase in milling time.Si and Zr atoms are dissolved into Mo gradually with the progress of milling.However,the evolutionary rates change significantly with milling conditions.The most significant influencing factor among different milling conditions is the input power from the mill to the powders,which plays a decisive role in the milling process.
Abstract
Elemental powder mixtures with the composition of Mo-12Si-10B-3Zr-0.3Y(at%)were milled in a planetary ball mill using hardened stainless-steel milling media under argon atmosphere.Effects of milling time,milling speed,process control agent,ball-to-powder ratio and milling ball size on the mechanical alloying processes were investigated from the points of morphology,internal structure,grain size,microstrain,phase constituent and issolution of solute atoms.It is shown that under all conditions,the microstructural evolutions of mechanically milled powder particles are similar.The morphological evolution can roughly be divided into five stages:individual particle,irregular blocky composite particle,flakeshaped particle,agglomerate and single particle.The internal structure generally undergoes five stages:individual particle,coarse lamellar structure,fine lamellar structure,non-uniformly mixed structure and plum-pudding structure.Regardless of exceptional cases,the grain size of Moss decreases and its microstrain increases with the increase in milling time.Si and Zr atoms are dissolved into Mo gradually with the progress of milling.However,the evolutionary rates change significantly with milling conditions.The most significant influencing factor among different milling conditions is the input power from the mill to the powders,which plays a decisive role in the milling process.
论文参考文献
论文详细介绍
论文作者分别是来自Rare Metals的,发表于刊物Rare Metals2019年07期论文,是一篇关于,Rare Metals2019年07期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Rare Metals2019年07期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。