论文摘要
传统的无机光波导材料及相关光子集成器件虽具有光损耗低和光学性能稳定等优点,但其制备工艺过程复杂、成本高,这在某种程度上制约了其应用的普及,这一点在特别关注器件和系统成本的各种局域光通信网的应用中显得尤为突出。而有机聚合物材料以其成本低、成膜性好、材料的光学性能易调控、器件制备工艺简单且易集成等优点,使之在实现低成本、高性能光子器件中成为国际前沿研究的热点,并在新一代全光网络等领域展现出广阔的市场应用前景。然而,虽然有机聚合物光波导材料的研究得到了极大重视,采用不同聚合物材料制备的相关光子学功能器件已显示了在器件制作工艺和成本方面的显著优势,但目前研究仍处于初期阶段,实现折射率的精确调控、低光损耗、低双折射并具备良好的热稳定性是人们极为关注并正在致力解决的关键问题。本论文将二氮杂萘酮联苯结构引入聚芳醚主链中,合成了一系列新型含二氮杂萘酮联苯结构(氟代)聚芳醚,系统研究了聚合物分子结构与性能的内在关系,以期满足光波导器件对材料性能的要求,并为发展高性能光子学器件提供一类新型聚合物基光波导基础材料。本文首先以二氮杂萘酮联苯酚单体(DHPZ)与二氯二苯砜(DCS)、二氟酮(DFK)/双酚S(BPS)为原料,合成了一系列含杂萘联苯结构的聚芳醚(酮)砜共聚物PPEKS和PPESs;所合成的聚合物均具有优异的耐热性能(玻璃化转变温度Tgs:224~289℃,氮气保护下1%的热失重温度Td1%s:446~494℃)以及良好的溶解性能;对所合成材料的旋涂成膜工艺进行了系统研究,通过优化工艺,成功制备了性能良好的波导薄膜,并对薄膜的光学特性进行了测试和表征。结果表明,PPEKS在光纤通信波段具有较高的折射率(TE模,1310nm:1.656;1550nm:1.653)、较大的热光系数(dn/dT)(TE模,1310nm:-1.21×10-4/℃;1550nm:-1.22×10-4/℃)以及较低的光损耗(1310nm:0.24dB/cm;1550nm:0.52dB/cm);通过控制单体的投料比,聚合物在波长为1310nm和1550nm处的折射率(TE模)可以分别在1.622~1.656以及1.619~1.653之间进行有效调控。将可交联基团四氟苯乙烯成功引入到了含二氮杂萘酮联苯结构聚芳醚酮砜主链中,制得了含四氟苯乙烯和二氮杂萘酮联苯结构单元的新型可交联聚芳醚酮砜(FSt-PPEKS);通过旋涂法制备了用于光波导制作的高性能聚合物薄膜,研究了薄膜的固化工艺,结果表明,FSt-PPEKS在1wt%过氧化二异丙苯(DCP)的引发作用下,在真空烘箱中于160℃下处理4hr可以取得较好的固化效果;固化后,其Tg和Td1%分别由261℃、494℃进一步提高至292℃和508℃;双折射系数则由0.02降至0.007。以二氮杂萘酮联苯酚单体(DHPZ)与六氟双酚A(6F-BPA)和十氟联苯(DFBP)为原料,利用KF与CaH2作催化剂,合成了一系列新型含二氮杂萘酮联苯结构氟代聚芳醚(FPPEs);所合成的FPPEs均有良好的耐热性(Tgs:185~269℃,Td1%s:487~510℃)及溶解性;对材料光学性能的测试结果表明,该类材料具有较低的光损耗(1550nm:<0.24dB/cm)、较大的热光系数(dn/dT)(TE模,1310nm:-0.96×10-4~-1.25×10-4/℃;1550nm:-0.96×10-4~-1.29×10-4/℃),此外,通过控制单体的投料比,FPPEs在波长为1310nm和1550nm处的折射率(TE模)可以分别在1.499~1.575和1.498~1.575之间进行有效调控。合成了含四氟苯乙烯和二氮杂萘酮联苯结构单元的氟代可交联聚芳醚(FSt-FPPE);DSC和TGA的测试结果表明,FSt-FPPE具有良好的耐热性能,其Tg及Td1%分别为237℃和486℃,固化后可分别进一步提高至253℃和497℃;通过热固化,其双折射从0.022降至0.005。