四阶抛物方程的各向异性有限元方法
论文摘要
本文在各向异性网格下,首先把非协调的ACM元应用于四阶抛物方程的半离散格式,通过高精度分析技巧得到了超逼近性质,进而通过适当的插值后处理技术得到了整体超收敛结果。同时在误差渐近展开式的基础上,得到了更为精确的外推结果。其次把协调的双三次Hermite元应用到了另一个四阶抛物方程,得到了超逼近结果。
论文目录
摘要Abstract前言第一章 预备知识1.1 Sobolev空间及一些结论1.2 有限元方法的基本理论1.3 各向异性基本定理第二章 四阶抛物方程各向异性ACM元的超收敛分析及外推2.1 引言2.2 单元构造与各向异性特征2.3 四阶抛物问题及其逼近2.4 各向异性超逼近结果2.5 超收敛分析与外推第三章 四阶抛物方程的各向异性双三次Hermite元逼近3.1 单元构造与各向异性特征3.2 问题及其逼近3.3 各向异性超逼近结果参考文献致谢学习期间发表的论文
相关论文文献
本文来源: https://www.lw50.cn/article/205ebda560a7e48456d91e2b.html