Print

:On the Reducibility of a Class of Linear Almost Periodic Differential Equations论文

本文主要研究内容

作者(2019)在《On the Reducibility of a Class of Linear Almost Periodic Differential Equations》一文中研究指出:In this paper, we use KAM methods to prove that there are positive measure Cantor sets such that for small perturbation parameters in these Cantor sets a class of almost periodic linear differential equations are reducible.

Abstract

In this paper, we use KAM methods to prove that there are positive measure Cantor sets such that for small perturbation parameters in these Cantor sets a class of almost periodic linear differential equations are reducible.

论文参考文献

  • [1].Functional Envelope of Cantor Spaces[J]. Xing Fu ZHONG,Jie L.  Acta Mathematica Sinica.2017(03)
  • [2].Cantor函数的曲线弧长[J]. 付秋菊.  大学数学.2018(03)
  • [3].一维广义Cantor集上拟对称映射的等价刻画[J]. 李彦哲.  湖北大学学报(自然科学版).2017(01)
  • [4].Cantor四分集上的变换及其遍历测度[J]. 王芬,张晓艳.  华中师范大学学报(自然科学版).2017(02)
  • [5].一类推广的Cantor函数的解析表达式[J]. 陆雨桐,吴波.  广西师范学院学报(自然科学版).2017(02)
  • [6].齐次Cantor集的填充测度(英文)[J]. 瞿成勤,朱智伟,周作领.  数学进展.2016(04)
  • [7].均匀Cantor集上填充测度和填充预测度[J]. 危纯.  应用数学.2015(03)
  • [8].齐次均匀Cantor集和一般齐次均匀Cantor集的关系[J]. 党云贵,刘彦芝.  山西师范大学学报(自然科学版).2015(03)
  • [9].Cantor集的结构及应用[J]. 阮世华.  安阳师范学院学报.2015(05)
  • [10].A Characteristic of Cantor Sets[J]. 麦结华.  柳州师专学报.2013(01)
  • 论文详细介绍

    论文作者分别是来自Communications in Mathematical Research的,发表于刊物Communications in Mathematical Research2019年01期论文,是一篇关于,Communications in Mathematical Research2019年01期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Communications in Mathematical Research2019年01期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    本文来源: https://www.lw50.cn/article/26d856221b455d335cb1600c.html