关于一类特殊的(α,β)-度量及具有广义迷向Berwald曲率的Finsler度量的性质
论文摘要
本文研究了一类特殊的(α,β)-度量以及具有广义迷向Berwald曲率的Finsler度量的性质。第三部分利用Maple程序,计算出了(α,β)-度量的测地系数和平均Cartan挠率。第四部分讨论了F=αe(κ(β/α)度量成为Berwald度量,Douglas度量,射影平坦的条件,并得到了一个计算Douglas曲率的另一个计算公式。第五部分在引进了广义迷向Berwald曲率的基础上,得到了具有广义迷向Berwald曲率的两个等价条件。主要获得以下结果:
论文目录
摘要(中文)摘要(英文)一、引言二、预备知识三、(α,β)-度量的一些基本计算四、一类特殊的(α,β)-度量的性质五、广义迷向Berwald度量的一些性质六、分析与思考附录一:一般Finsler度量的各种曲率计算的Maple程序附录二:判断Finsler度量是射影平坦的Maple程序参考文献后记
相关论文文献
- [1].从Berwald空间到Riemann空间的射影变换[J]. 重庆理工大学学报(自然科学) 2016(01)
- [2].一类具有标量旗曲率的Berwald(α,β)-度量(英文)[J]. 数学进展 2012(02)
- [3].关于一类弱Berwald的(α,β)-度量(英文)[J]. 数学杂志 2014(05)
- [4].复乘积流形上Berwald度量与强Khler-Finsler度量的构造(英文)[J]. 数学进展 2012(06)
- [5].关于一类Berwald的(α,β)-度量[J]. 重庆理工大学学报(自然科学) 2012(06)
- [6].Finsler空间的Berwald全脐子流形[J]. 同济大学学报(自然科学版) 2009(09)
- [7].关于共形Berwald的Kropina度量(英文)[J]. 数学进展 2015(03)
本文来源: https://www.lw50.cn/article/3748a400e3dc499e51ea2c7f.html